scholarly journals Exact Beltrami flows in a spherical shell

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oleg Bogoyavlenskij

Abstract Exact flows of an incompressible fluid satisfying the Beltrami equation inside a spherical shell are constructed in the Cartesian coordinates in terms of elementary functions. Two scale-invariant equations defining two infinite series of eigenvalues λ n and λ ̃ m ${\tilde {\lambda }}_{m}$ of the operator curl in the shell with the nonpenetration boundary conditions on the boundary spheres are derived. The corresponding eigenfields are presented in explicit form and their symmetries are investigated. Asymptotics of the eigenvalues λ n and λ ̃ m ${\tilde {\lambda }}_{m}$ at n, m → ∞ are obtained.

2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Y. V. K. Ravi Kumar ◽  
S. V. H. N. Krishna Kumari.P ◽  
M. V. Ramana Murthy ◽  
S. Sreenadh

Peristaltic transport due to a sinusoidal wave traveling on the boundary of a tube filled with an incompressible fluid is presented. Solution is obtained under infinite wavelength and zero Reynolds number in a finite length tube which extends the study of Li and Brasseur (1993, “Non-Steady Peristaltic Transport in Finite-Length Tubes,” J. Fluid Mech., 248, pp. 129–151). Boundary conditions are changed to include wall permeability. Analysis of pressure profile is described.


Author(s):  
Gary A. Glatzmaier

This chapter examines how boundary and geometry affect convection. It begins with a discussion of how one can implement “absorbing” top and bottom boundaries, which reduce the large-amplitude convectively driven flows within shallow boundary layers or the reflection of internal gravity waves off these boundaries in a stable stratification. It then considers how to replace the impermeable side boundary conditions with permeable periodic side boundary conditions to allow fluid flow through these boundaries and nonzero mean flow. It also introduces “two and a half dimensional” geometry within a cartesian box geometry and describes how a fully 3D cartesian box model could be constructed. Finally, it presents a model of convection in a fully 3D spherical-shell and shows how it can be easily reduced to a 2.5D spherical-shell model. The horizontal structures are represented in terms of spherical harmonic expansions.


2019 ◽  
Vol 82 ◽  
pp. 373-382
Author(s):  
L. Korre ◽  
N. Brummell ◽  
P. Garaud

In this paper, we investigate the dynamics of convection in a spherical shell under the Boussinesq approximation but considering the compressibility which arises from a non zero adiabatic temperature gradient, a relevant quantity for gaseous objects such as stellar or planetary interiors. We find that depth-dependent superiadiabaticity, combined with the use of mixed boundary conditions (fixed flux/fixed temperature), gives rise to unexpected dynamics that were not previously reported.


2004 ◽  
Vol 71 (6) ◽  
pp. 866-878 ◽  
Author(s):  
Xian-Fang Li ◽  
Kang Yong Lee

Previous studies assumed that a crack is either impermeable or permeable, which are actually two limiting cases of a dielectric crack. This paper considers the electroelastic problem of a three-dimensional transversely isotropic piezoelectric material with a penny-shaped dielectric crack perpendicular to the poling axis. Using electric boundary conditions controlled by the boundaries of an opening crack, the electric displacements at the crack surfaces are determined. The Hankel transform technique is employed to reduce the considered problem to dual integral equations. By solving resulting equations, the results are presented for the case of remote uniform loading, and explicit expressions for the electroelastic field at any point in the entire piezoelectric body are given in terms of elementary functions. Moreover, the distribution of asymptotic field around the crack front and field intensity factors are determined. Numerical results for a cracked PZT-5H ceramic are evaluated to examine the influence of the dielectric permittivity of the crack interior on the field intensity factors, indicating that the electric boundary conditions at the crack surfaces play an important role in determining electroelastic field induced by a crack, and that the results are overestimated for an impermeable crack, and underestimated for a permeable crack.


2016 ◽  
Vol 20 (4) ◽  
pp. 944-968
Author(s):  
Kai Zhang ◽  
Ming Li ◽  
Jingzhi Li

AbstractRemoving geometric details from the computational domain can significantly reduce the complexity of downstream task of meshing and simulation computation, and increase their stability. Proper estimation of the sensitivity analysis error induced by removing such domain details, called defeaturing errors, can ensure that the sensitivity analysis fidelity can still be met after simplification. In this paper, estimation of impacts of removing arbitrarily constrained domain details to the analysis of incompressible fluid flows is studied with applications to fast analysis of incompressible fluid flows in complex environments. The derived error estimator is applicable to geometric details constrained by either Dirichlet or Neumann boundary conditions, and has no special requirements on the outer boundary conditions. Extensive numerical examples were presented to demonstrate the effectiveness and efficiency of the proposed error estimator.


1967 ◽  
Vol 34 (2) ◽  
pp. 299-307 ◽  
Author(s):  
D. E. Johnson

An analytical investigation is made of the stresses due to external forces and moments acting on an elastic nonradial circular cylindrical nozzle attached to a spherical shell. The nozzle (a cylindrical shell) is nonradial in the sense that its axis is inclined and does not pass through the center of the sphere. Results are obtained by combining solutions from shell theory by a Galerkin-type method so as to satisfy boundary conditions at the intersection of the two shells. It is found that, as the nozzle inclination increases, the stresses change gradually from those previously given by Bijlaard for the radial nozzle.


Sign in / Sign up

Export Citation Format

Share Document