Photochemisch initiierte Telomerisation von Äthylen mit Formamid / Photo-Initiated Telomerization of Ethylene with Formamide

1975 ◽  
Vol 30 (9-10) ◽  
pp. 740-747 ◽  
Author(s):  
H. P. Rath ◽  
A. Saus ◽  
B. Dederichs

Under the influence of UV light (high pressure HPK 125, Philips) and in presence of acetone ethylene and formamide react under elevated pressure (12.5-100 kp/cm2) to give odd-numbered n-alkane carbonic acid amides of chain lenghth C3-C19. Product yields improve with rising pressure. By increasing the concentration of aceton (0.1-8 mol-%), the reaction pressure the reaction time and at low temperatures the average mol.-weight is shifted to higher values. The chain distribution corresponds to a geometrical progression. Per 1 kwh electrical power input of the uv-equipment 0.5 kg of product is formed with chain length: 78% C3-C7, 12% C9, 10% C11-C19.

Author(s):  
Vadim Kloos ◽  
Trevor H. Speak ◽  
Robert J. Sellick ◽  
Peter Jeschke

The effects of high shaft power offtake in a direct drive, a geared drive, and a novel turbofan configuration are investigated. A design and off-design performance analysis shows the configuration specific limitations and advantages. The more electric aircraft (MEA) concept promises to offer advantages with respect to aircraft performance, maintenance and operating costs. The engines for the MEA concept are based on conventional turbofan architectures. These engines are designed for significantly increased shaft power offtake that is required by the airframe, and the shaft power is usually taken off the high-pressure spool. This can impair the off-design performance of the engine and lead to compromises during engine design and to operability limitations. Taking the power off the low-pressure spool mitigates some of the problems but has other limitations. In this work, an alternative novel turbofan architecture is investigated for its potential to avoid the problems related to high shaft power offtakes. This architecture is called the dual drive booster because it uses a summation gearbox to drive the booster from both the low- and high-pressure spool. The shaft power, if taken off the booster spool, is effectively provided by both the low- and high-pressure spools, which allows the provision of very high power levels. This new concept is benchmarked against a two-spool direct drive and a geared drive turbofan. Furthermore, it is described, how the new architecture can incorporate an embedded motor generator. The presented concept mitigates some of the problems which are encountered during high power offtake in conventional configurations. In particular, the core compressors are less affected by a change in shaft power offtake. This allows higher power offtakes and gives more flexibility during engine design and operation. Additionally, the potential to use the new configuration as a gas turbine-electric hybrid engine is assessed, where electrical power boost is applied during critical flight phases. The ability to convert additional shaft power is compared with conventional configurations. Here, the new configuration also shows superior behavior because the core compressors are significantly less affected by power input than in conventional configurations. The spool speed and its variation is more suitable for electrical machines than in conventional configuration with low-pressure spool power transfer. The dual drive booster concept is particularly suited for applications with high shaft power offtakes and inputs, and should be considered for propulsion of more electric aircrafts.


Author(s):  
W. Engel ◽  
M. Kordesch ◽  
A. M. Bradshaw ◽  
E. Zeitler

Photoelectron microscopy is as old as electron microscopy itself. Electrons liberated from the object surface by photons are utilized to form an image that is a map of the object's emissivity. This physical property is a function of many parameters, some depending on the physical features of the objects and others on the conditions of the instrument rendering the image.The electron-optical situation is tricky, since the lateral resolution increases with the electric field strength at the object's surface. This, in turn, leads to small distances between the electrodes, restricting the photon flux that should be high for the sake of resolution.The electron-optical development came to fruition in the sixties. Figure 1a shows a typical photoelectron image of a polycrystalline tantalum sample irradiated by the UV light of a high-pressure mercury lamp.


1997 ◽  
Vol 35 (4) ◽  
pp. 311-319 ◽  
Author(s):  
L. Lei ◽  
X. Hu ◽  
H. P. Chu ◽  
G. Chen ◽  
P. L. Yue

The treatment of dyeing and printing wastewater from the textile industry by oxidation was studied. The reaction was carried out in a two-litre high pressure reactor. In order to promote the oxidation of organic pollutants present in the wastewater, experiments were conducted using various catalysts including metal salts, metal oxides, and porous alumina supported metals. All catalysts tested were able to enhance the conversion of organic compounds in wastewater, shorten the reaction time, and lower the reaction temperature. The alumina supported catalyst has an advantage over other catalysts in that it can be easily separated from the treated wastewater by filtration and recycled. The conditions in preparing the catalyst supported by porous alumina were experimentally optimised.


2021 ◽  
Vol 258 ◽  
pp. 117614
Author(s):  
Ilya V. Novikov ◽  
Marina A. Pigaleva ◽  
Alexander V. Naumkin ◽  
Gennady A. Badun ◽  
Eduard E. Levin ◽  
...  

Author(s):  
Nives Marušić Radovčić ◽  
Damir Ježek ◽  
Ksenija Markov ◽  
Jadranka Frece ◽  
Duška Ćurić ◽  
...  

In the present work, the effect of high pressure processing (HPP) (0, 100, 200 and 300 MPa) and different treatment time (5 and 10 minutes) on the moisture uptake, cooking yield, colour and texture, as well as microbial population of chicken breast fillets was investigated. The application of high hydrostatic pressure resulted in a modification of quality parameters of chicken breast meat. By increasing pressure and time of the treatment the moisture uptake was reduced: samples treated with 300 MPa for 10 min had the lowest moisture uptake values. Cooking yield was not affected by HPP treatments. Increased pressure affected the colour by increasing L*, a* and b* values (only HPP treatment of 100 MPa in duration of 5 and 10 minutes did not affect colour of chicken breast meat). Lower pressures (100 and 200 MPa) tenderized, whereas elevated pressure (300 MPa) increased hardness in chicken breast fillets. Higher level of pressure (300 MPa) reduced bacteria count by about 3.0 – 5.3 log (CFU/g), depending on the microorganism and duration of the process.


2010 ◽  
Vol 722 (2) ◽  
pp. 1598-1606 ◽  
Author(s):  
Yasuhiro Oba ◽  
Naoki Watanabe ◽  
Akira Kouchi ◽  
Tetsuya Hama ◽  
Valerio Pirronello

Author(s):  
B. Eckert ◽  
H. J. Jodl ◽  
H. O. Albert ◽  
P. Foggi

2018 ◽  
Vol 25 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
Adam S. Hoffman ◽  
Joseph A. Singh ◽  
Stacey F. Bent ◽  
Simon R. Bare

In situ characterization of catalysts gives direct insight into the working state of the material. Here, the design and performance characteristics of a universal in situ synchrotron-compatible X-ray diffraction cell capable of operation at high temperature and high pressure, 1373 K, and 35 bar, respectively, are reported. Its performance is demonstrated by characterizing a cobalt-based catalyst used in a prototypical high-pressure catalytic reaction, the Fischer–Tropsch synthesis, using X-ray diffraction. Cobalt nanoparticles supported on silica were studied in situ during Fischer–Tropsch catalysis using syngas, H2 and CO, at 723 K and 20 bar. Post reaction, the Co nanoparticles were carburized at elevated pressure, demonstrating an increased rate of carburization compared with atmospheric studies.


Sign in / Sign up

Export Citation Format

Share Document