scholarly journals Synthesis and characterization of allyl- and vinyl-substituted 1,2-bis(tetrazolo)ethanes as polymeric precursors

2016 ◽  
Vol 71 (12) ◽  
pp. 1199-1209
Author(s):  
Vera A. Hartdegen ◽  
Maximilian S. Hofmayer ◽  
Konstantin Karaghiosoff ◽  
Thomas M. Klapötke

AbstractOn the basis of 1,2-bis(5-tetrazolo)ethane (BTE) the corresponding twofold vinyl and allyl N-substituted derivatives were synthesized using 1,2-dibromoethane and allyl bromide, respectively. The compounds were obtained as two different constitutional isomers. Both species were analyzed using NMR and IR spectroscopy, elemental analysis, as well as mass spectrometry. In the case of the diallyl bistetrazoles, the two isomers were characterized using 2D NMR spectroscopy. The synthesis of the divinyl compounds gave crystals of the 2,2′-N-substituted isomer, which were analyzed by single-crystal X-ray diffraction. The thermal stability of the compounds was determined using differential scanning calorimetry (DSC) and gave decomposition temperatures around 190°C and 230°C. For the investigation of the inherent energetic potential, sensitivities toward physical stimuli and detonation parameters were determined. The compounds turned out to be insensitive toward friction and impact and possess moderate energetic properties.

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5552
Author(s):  
Ryota Kudo ◽  
Masahiro Sonobe ◽  
Yoshiaki Chino ◽  
Yu Kitazawa ◽  
Mutsumi Kimura

The synthesis and characterization of two phthalocyanine (Pc) structural isomers, 1 and 2, in which four 2,6-di(hexyloxy)phenyl units were attached directly to the 1,8,15,22- or 1,4,15,18-positions of the Pc rings, are described. Both Pcs 1 and 2 exhibited low melting points, i.e., 120 and 130 °C respectively, due to the reduction in intermolecular π-π interaction among the Pc rings caused by the steric hindrance of 2,6-dihexyloxybenzene units. The thermal behaviors were investigated with temperature-controlled polarizing optical microscopy, differential scanning calorimetry, powder X-ray diffraction, and absorption spectral analyses. Pc 1, having C4h molecular symmetry, organized into a lamellar structure containing lateral assemblies of Pc rings. In contrast, the other Pc 2 revealed the formation of metastable crystalline phases, including disordered stacks of Pcs due to rapid cooling from a melted liquid.


2000 ◽  
Vol 15 (7) ◽  
pp. 1617-1621 ◽  
Author(s):  
Jan Schroers ◽  
Konrad Samwer ◽  
Frigyes Szuecs ◽  
William L. Johnson

The reaction of the bulk glass forming alloy Zr41Ti14Cu12Ni10Be23 (Vit 1) with W, Ta, Mo, AlN, Al2O3, Si, graphite, and amorphous carbon was investigated. Vit 1 samples were melted and subsequently solidified after different processing times on discs of the different materials. Sessile drop examinations of the macroscopic wetting of Vit 1 on the discs as a function of temperature were carried out in situ with a digital optical camera. The reactions at the interfaces between the Vit 1 sample and the different disc materials were investigated with an electron microprobe. The structure and thermal stability of the processed Vit 1 samples were examined by x-ray diffraction and differential scanning calorimetry. The results are discussed in terms of possible applications for composite materials.


2011 ◽  
Vol 327 ◽  
pp. 115-119 ◽  
Author(s):  
Duo Wang ◽  
Jie Gao ◽  
Wei Fang Xu ◽  
Feng Bao ◽  
Rui Ma ◽  
...  

Graphene oxide (GO) was made by a modified Hummers method. Graphene oxide modified phenolic resin nanocomposites (GO/PF) were prepared by Steglich esterification, catalyzed by dicyclohexyl carbodiimide and 4-dimethylaminopyridine. The composites were characterized by Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. The result revealed that the graphene oxide was absolutely exfoliated and covalent linked GO/PF composite was obtained. The thermal stability of PF is remarkably improved by modification with GO.


2021 ◽  
Vol 18 ◽  
Author(s):  
Wan-Sinn Yam ◽  
Yit-Peng Goh ◽  
Foo-Win Yip ◽  
Gurumurthy Hegde

Introduction: This is the first report on chiral polymorphic hydrazine-based asymmetric liquid crystal trimers, 1-[4'-(4''- (5-Cholesteryloxy)carbonyl)butyloxy]-3-[N-benzylideneoxy-N'-(4'''-decyloxybenzylidene)hydrazine] butyloxybenzenes, and 1-[4'-(4''-(10-cholesteryloxy)carbonyl)nonyloxy]-3-[N-benzylideneoxy-N'-(4'''- decyloxybenzylidene)hydrazine]butyloxybenzenes., in which the hydrazine and cholesterol arms were connected via two flexible methylene spacers (n = 3-12 units and m = 4 or 9, respectively) to the central resorcinol core. Materials and Methods: FT-IR, 1D and 2D NMR spectroscopy, and CHN microanalysis were used to elucidate the structures of the trimers. Differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction were used to study the transitional and phase properties of the trimers, of which they were length and spacer parity dependent. Trimers with short spacer length in the cholesteryl arm, m = 4 showed interesting phase sequence of BP/N*-TGBA*-SmA*. Results and discussion: The TGBA∗ phase was sensitive to spacer length as it was only observed in trimers with short ester linkage. For the long analogues, m = 9, characteristic visible reflection and a much simpler phase sequence with only N* and SmA* phases were seen. Conclusion: The X-ray diffraction measurements revealed that layer periodicities of the SmA* phase were approximately half the estimated all-trans molecular length (d/L ≈ 0.44-0.52), thus suggesting that the molecules are either strongly intercalated or bent.


2012 ◽  
Vol 217-219 ◽  
pp. 551-554
Author(s):  
Ting Xi Li ◽  
Yu Hua Zhao ◽  
Qian Li ◽  
Cheng Qian Yuan ◽  
Quan Liang Chen ◽  
...  

Abstract. Polyaniline (PANI) and p-phenylenediamine (p-PDA)-aniline copolymer were prepared via a same microemulsion method. The structures of the PANI and p-PDA-aniline copolymer were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis(TGA). The results revealed the difference of synthesis and characterization between PANI and p-PDA-aniline copolymer. It was shown that structure of the copolymer is almost similar to that of PANI, but the p-PDA-aniline copolymer has a better crystallization than PANI, and the thermal stability of the copolymer is higher than that of pure PANI.


1999 ◽  
Vol 14 (5) ◽  
pp. 1805-1813 ◽  
Author(s):  
Florence Fusalba ◽  
Daniel Bélanger

A novel polyaniline-molybdenum trisulfide composite has been prepared by chemical polymerization from an acidic (1 M HCl) aqueous solution containing aniline and ammonium tetrathiomolybdate. The presence of molybdenum trisulfide in the polyaniline matrix induces morphological change to the polymer as evidenced by scanning electron micrographs. X-ray diffraction and differential scanning calorimetry indicate that polyaniline-molybdenum trisulfide is slightly less crystalline than polyaniline-HCl. X-ray photoelectron spectroscopy (XPS) and elemental analysis have been used to confirm the presence of molybdenum trisulfide in the polymer matrix. The XPS data also confirm that molybdenum trisulfide and tetrathiomolybdate anions are present with polyaniline to form a new inorganic-organic composite.


2009 ◽  
Vol 67 ◽  
pp. 227-232 ◽  
Author(s):  
Gurpreet Singh ◽  
Amrish Panwar ◽  
Anjan Sil ◽  
Sudipto Ghosh

Nanocrystalline LiMn2O4 powder was synthesized by sol-gel method using citric acid as a chelating agent. The powders were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Differential scanning calorimetry (DSC), Differential thermal analysis (DTA), Impedance spectroscopy (IS) and Electrochemical measurements. The powder particles having slight agglomeration characteristics were found to have prismatic morphology and a wider size distribution from 50 nm to 200 nm, which provides good packing density of the material. The electrical conductivity of the powder at room temperature is in the order of ~10-5 S/cm. The structural stability of LiMn2O4 cubic spinel over the temperature range of battery operation was assessed. Electrochemical performance of the material shows a discharge capacity of ~130 mAh/gm.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Cemil Alkan ◽  
Leyla Aras ◽  
Güngör Gündüz

Abstract A novel type of phthalocyanine polymer, 1,4-diazophenylene-bridged Cuphthalocyanine, was prepared from the diazonium salt of diaminobenzene and Cu(II) 1,8,15,22-tetraaminophthalocyanine. The polymer is partially soluble in tetrahydrofuran, dichloromethane, and dimethylformamide. Characterization of the polymer was performed by IR and UV-visible spectroscopy, X-ray diffraction, ash analysis, viscometry, differential scanning calorimetry and thermogravimetric analysis. The molecular weight of the soluble part of the polymer was determined by ebullioscopy. Electrical conductivity of the polymer and its doped samples were determined by the 4-probe technique. It was found that the electrical conductivity increased up to 10-4 S/cm after doping. The redox behaviour of the polymer was investigated utilizing cyclic voltammetry.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Matko Erceg ◽  
Dražan Jozić

Abstract Poly(3-hydroxybutyrate)/Cloisite25A (PHB/25A) nanocomposites were prepared by solution-intercalation method. The intercalation of PHB chains between the layers of Cloisite25A was observed by X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and non-isothermal thermogravimetry (TG) analysis were performed to study the thermal properties, crystallization and the thermal degradation of the prepared nanocomposites. DSC analysis indicates that Cloisite25A acts as a nucleating agent and increases the crystallization rate of PHB, but due to intercalation reduces its overall degree of crystallinity. TG analysis shows that addition of Cloisite25A enhances the thermal stability of PHB.


e-Polymers ◽  
2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaowen Cui ◽  
Deyue Yan ◽  
Dan Xiao

Abstract Linear polyamides with high aliphatic content were prepared through step-heating melt polycondensation of tridecanedioic acid with various diamines. The synthesized polyamides were characterized comprehensively by means of IR, NMR and Raman spectroscopy. In addition, thermogravimetry, differential scanning calorimetry and dynamic mechanical analysis were used to investigate thermal properties of the obtained polyamides. It was found that melting and crystallization temperatures decrease as the aliphatic content increases. X-ray diffraction was applied to determine the crystal structures of the polyamides.


Sign in / Sign up

Export Citation Format

Share Document