scholarly journals Thermal conversion of the hydrous aluminosilicate LiAlSiO3(OH)2 into γ-eucryptite

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alisa Gordeeva ◽  
Istvan Z. Jenei ◽  
Kristina Spektor ◽  
Olga Yu. Vekilova ◽  
Ulrich Häussermann

Abstract LiAlSiO3(OH)2 is a dense hydrous aluminosilicate which is formed from LiAlSiO4 glass in hydrothermal environments at pressures around 5 GPa. The OH groups are part of the octahedral Al and Li coordination. We studied the dehydration behavior of LiAlSiO3(OH)2 by a combination of TEM and multi-temperature PXRD experiments. Dehydration takes place in the temperature interval 350–400 °C. Above 700 °C LiAlSiO3(OH)2 is converted via a transient and possibly still slightly hydrous phase into γ-eucryptite which is a metastable and rarely observed polymorph of LiAlSiO4. Its monoclinic structure is built from corner-sharing LiO4, AlO4 and SiO4 tetrahedra. The ordered framework of AlO4 and SiO4 tetrahedra is topologically equivalent to that of cristobalite.

1977 ◽  
Vol 32 (1) ◽  
pp. 37-40 ◽  
Author(s):  
Franz Koubowetz ◽  
Heinrich Noller

The decomposition of Mg(OH)2 was studied by means of thermogravimetry, IR-spectroscopy, DTA, thermodesorption with GC and MS, and X-ray analysis.Water was evolved in two steps, at 230 °C (a small amount only) and 380 °C. The band at 3700 cm-1, that is assigned to OH groups of Mg(OH)2, was not present above 270 °C. Assuming that only surface OH groups appear in the IR spectrum, but no bulk OH groups, the steps at 230 °C and 380 °C can be attributed to the decomposition of the surface and the bulk, resp.


2016 ◽  
Vol 12 (8) ◽  
pp. 295-300
Author(s):  
Olga Kovalchukova ◽  
Amangdam A.T. ◽  
Strashnova S.B. ◽  
Strashnov P.V. ◽  
Romashkina E.P. ◽  
...  

Using spectrophotometric titration technique, the processes of complex formation of some phenylazo-derivatives of methylphloroglucinol (MPG) containing hydroxo-, nitro- and nitroso-substituents were studied. The spectral criteria of neutral and ionized forms of the organic ligands in their different tautomeric forms were determined.It was detected that the complex formation is accompanied by formation of one or two chelate cycles which involve azo- or nitroso-fragments and neighboring OH-groups of the organic ligands. Different types of coordination lead to different changes in the electronic absorption spectra.The DFT-B3LYP modeling of a Ni(II) complex of α-hydroxyphenylazo MPG established the most probable coordination mode of the organic ligand: tridentate chelating dianion, distorted square coordination of Ni-cations including one water molecule.  The theoretical results are in a good accordance with the experimental data.


2020 ◽  
pp. 42-48
Author(s):  
Tatiana Safronova ◽  
◽  
Tatiana Shatalova ◽  
Snezhana Tikhonova ◽  
Yaroslav Filippov ◽  
...  

Powders of calcium pyrophosphate Ca2P2O7 in the form of γ- и β-modifications have been produced as a result of thermal conversion of brushite CaHPO4∙2H2O synthesized from phosphoric acid H3PO4 and calcium carbonate CaCO3 at the molar ratio P / Ca = 1.1. The resulting powders can be used for production of various functional materials including biocompatible and bioresorbable ones for the treatment of bone defects.


2019 ◽  
Vol 70 (9) ◽  
pp. 3103-3107 ◽  
Author(s):  
Ioana Glevitzky ◽  
Gabriela Alina Dumitrel ◽  
Mirel Glevitzky ◽  
Bianca Pasca ◽  
Pavel Otrisal ◽  
...  

Using different methods of statistics, this paper aims to highlight the potential link between the antioxidant activity of flavonoids and the corresponding molecular descriptors. By calculating the descriptors (van der Waals surface (A), molar volume (V), partition coefficient (LogP), refractivity (R), polarizability (a), forming heat (Hformation), hydration energy (Ehidr), the dipole moment (mt)), together with antioxidant activities (RSA) calculated or taken from the literature, number of phenolic -OH groups and the presence (2) or absence (1) of C2=C3 double bond) for 29 flavonoid compounds and by intercorrelation between the studied parameters, the link between the number of phenolic groups grafted to the basic structure of flavonoids and their antioxidant activity was confirmed. Simultaneously, by using the chi-squared test and the intercorrelations matrix, a satisfactorily correlation coefficient (r2=0.5678; r=0.7536) between the structure of the flavonoids and their activity was obtained, fact that confirms the correlation of the antioxidant activity with the number of -OH phenolic groups.


2020 ◽  
Vol 24 ◽  
Author(s):  
Hubert Hettegger ◽  
Andreas Hofinger ◽  
Thomas Rosenau

: The regioselectivity of the reaction of 2,5-dihydroxy-[1,4]-benzoquinone (DHBQ) with diamines could not be explained satisfactorily so far. In general, the reaction products can be derived from the tautomeric ortho-quinoid structure of a hypothetical 4,5-dihydroxy-[1,2]-benzoquinone. However, both aromatic and aliphatic 1,2-diamines form in some cases phenazines, formally by diimine formation on the quinoid carbonyl groups, and in other cases the corresponding 1,2- diamino-[1,2]-benzoquinones, by nucleophilic substitution of the OH groups, the regioselectivity apparently not following any discernible pattern. The reactivity was now explained by an adapted theory of strain-induced bond localization (SIBL). Here, the preservation of the "natural" geometry of the two quinoid C–C double bonds (C3=C4 and C5=C6) as well as the N–N distance of the co-reacting diamine are crucial. A decrease of the annulation angle sum (N–C4–C5 + C4–C5–N) is tolerated well and the 4,5-diamino-ortho-quinones, having relatively short N–N spacings are formed. An increase in the angular sum is energetically unfavorable, so that diamines with a larger N–N distance afford the corresponding ortho-quinone imines. Thus, for the reaction of DHBQ with diamines, exact predictions of the regioselectivity, and the resulting product structure, can be made on the basis of simple computations of bond spacings and product geometries.


2020 ◽  
Vol 23 (7) ◽  
pp. 568-586
Author(s):  
Samy M. Ahmed ◽  
Ibrahim A. Shaaban ◽  
Elsayed H. El-Mossalamy ◽  
Tarek A. Mohamed

Objective: Two novel Schiff bases named, 2-((2-Hydroxybenzylidene)amino)-4,5,6,7- tetrahydrobenzo[b] thiophene-3-carbonitrile (BESB1) and 2-((Furan-2-ylmethylene)amino)-4,5,6, 7-tetrahydro-benzo[b]thiophene-3-carbonitrile (BESB2) were synthesized. Methods: The structures were characterized based on CHN elemental analysis, mid-infrared (400– 4000 cm-1), Raman (100-4000 cm-1), 1H NMR, mass and UV-Vis spectroscopic measurements. In addition, quantum mechanical calculations using DFT-B3LYP method at 6-31G(d) basis set were carried out for both Schiff bases. Initially, we have carried out complete geometry optimizations followed by frequency calculations for the proposed conformational isomers; BESB1 (A–E) and BESB2 (F–J) based on the orientations of both CN and OH groups against the azomethine lonepair (NLP) in addition to the 3D assumption. Results: The computational outcomes favor conformer A for BESB1 in which the C≡N and OH moieties are cis towards the NLP while conformer G is preferred for BESB2 (the C≡N/furan-O are cis/trans towards the NLP) which was found consistent with the results of relaxed potential energy surface scan. Aided by normal coordinate analysis of the Cartesian coordinate displacements, we have suggested reliable vibrational assignments for all observed IR and Raman bands. Moreover, the electronic absorption spectra for the favored conformers were predicted in DMSO solution using TD-B3LYP/6-31G(d) calculations. Similarly, the 1H NMR chemical shifts were also estimated using GIAO approach implementing PCM including solvent effects (DMSO-d6). Conclusion: Proper interpretations of the observed electronic transition, chemical shifts, IR and Raman bands were presented in this study.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


1991 ◽  
Vol 56 (12) ◽  
pp. 2786-2790 ◽  
Author(s):  
Václav Svoboda ◽  
Milan Zábranský

Molar heat capacities of 2,3,6-trimethylpyridine, 2,4,6-trimethylpyridine and 3-methoxypropionitrile in the liquid state were measured at the constant atmospheric pressure in the temperature interval of 300.60 to 328.35 K. The static type of adiabatic calorimeter was used for the measurements.


1992 ◽  
Vol 57 (8) ◽  
pp. 1739-1746
Author(s):  
Katarína Škvareninová ◽  
Štefan Baláž ◽  
Ernest Šturdík ◽  
Miroslav Veverka ◽  
Jana Adamcová ◽  
...  

In the series of cephalosporin derivatives, consisting of eight 7-(R1-CH2-CO-NH)cephalosporanic acids and of seven analogical compounds with 3-acetoxymethyl replaced by 3-CH3, physicochemical properties, which are expected to play a role in their antibacterial effects (the transport rate parameters and partition coefficients in the systems 1-octanol-water and 1-octanol-buffer, dissociation constants of the 4-carboxyl group, reactivity towards L-glutathione imitating the nucleophilic groups of the cell components and hydrolysis rate parameters), were determined. Linear dependences were observed between the partition coefficients and the π-constants of the varying substituents as well as between reactivity towards SH-groups of L-glutathione and OH-groups. The relationship between the transport rate parameters and partition coefficients, both measured in buffered as well as non-buffered system, was described by a common non-linear equation.


Sign in / Sign up

Export Citation Format

Share Document