Studies on the Melting of DNA

1974 ◽  
Vol 29 (3-4) ◽  
pp. 130-132
Author(s):  
Gokul Chandra Das

Abstract The thermal denaturation of the native DNA in solvents of varying salt concentrations was studied by viscometric and spectrophotometric methods. It was observed that within the molarity range of 0.02 ᴍ to 0.3 ᴍ, the melting temperatures obtained by the two independent methods agreed well, but that at lower ionic strength the agreement was not satisfactory. Both the visco­metric and the spectrophotometric measurements showed an increase of the melting temperature with increasing counterion concentration and a levelling off effect in the neighbourhood of 0.3 ᴍ.

1974 ◽  
Vol 29 (3-4) ◽  
pp. 133-135 ◽  
Author(s):  
G. C. Das ◽  
N. N. Das

Abstract The binding of proflavine to native DNA increased its stability against thermal denaturation as measured by viscometric method. Up to a moderate ionic strength of 0.058 ᴍ, the melting temperature of the complex increased almost linearly with the increase of dye concentrations and a saturation was reached when one proflavine molecule was added per four to five DNA-Phosphates (D/P≅0.2). The extent of stabilization (ΔTm) produced by dye binding decreased gradually with the increase of ionic strength and no stabilization effect was observed at an ionic strength of about 0.3 ᴍ. The maximum melting temperature attained by Proflavine binding was almost independent of the ionic strength of the medium. The same maximum value was reached as obtained simply by increasing the sodium ion concentration.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3786
Author(s):  
Elena Cristea ◽  
Aliona Ghendov-Mosanu ◽  
Antoanela Patras ◽  
Carmen Socaciu ◽  
Adela Pintea ◽  
...  

Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to assess the color and antioxidant stability of the extracts prepared from such fruits during various thermal treatments and at different pH and ionic strength values. Various spectrophotometric methods, HPLC, and capillary electrophoresis were used to quantify the concentrations of bioactive compounds—polyphenols, carotenoids, organic acids, and to assess antioxidant activity and color. The results show that rowan berries contain circa 1.34–1.47 g/100 g of polyphenols among which include catechin, epicatechin, ferulic acid methyl ester, procyanidin B1, etc.; ca 21.65 mg/100 g of carotenoids including zeaxanthin, β-cryptoxanthin, all-trans-β-carotene, and various organic acids such as malic, citric, and succinic, which result in a high antioxidant activity of 5.8 mmol TE/100 g. Results also showed that antioxidant activity exhibited high stability when the extract was subjected to various thermal treatments, pHs, and ionic strengths, while color was mainly impacted negatively when a temperature of 100 °C was employed. This data confirms the technological potential of this traditional, yet often overlooked species.


2019 ◽  
Vol 92 (2) ◽  
pp. 249-258
Author(s):  
Antonija Erben ◽  
Josipa Matić ◽  
Nikola Basarić ◽  
Ivo Piantanida

Dipeptide 4 containing two unnatural amino acids, a modified tyrosine and a phenanthridine derivative, was synthesized. Binding of the dipeptide to a series of polynucleotides including ct-DNA, poly A - poly U, poly (dAdT)2, poly dG - poly dC and poly (dGdC)2 was investigated by thermal denaturation experiments, fluorescence spectroscopy and circular dichroism. Thermal denaturation experiments indicated that dipeptide 4 at pH 5.0, when phenanthridine is protonated, stabilizes ds-DNA, whereas it destabilizes ds-RNA. At pH 7.0, when the phenanthridine is not protonated, effects of 4 to the polynucleotide melting temperatures are negligible. At pH 5.0, dipeptide 4 stabilized DNA double helices, and the changes in the CD spectra suggest different modes of binding to ds-DNA, most likely the intercalation to poly dG- poly dC and non-specific binding in grooves of other DNA polynucleotides. At variance to ds-DNA, addition of 4 destabilized ds-RNA against thermal denaturation and CD results suggest that addition of 4 probably induced dissociation of ds-RNA into ss-RNA strands due to preferred binding to ss-RNA. Thus, 4 is among very rare small molecules that stabilize ds-DNA but destabilize ds-RNA. However, fluorescence titrations with all polynucleotides at both pH values gave similar binding affinity (log Ka ≈ 5), indicating nonselective binding. Preliminary photochemical experiments suggest that dipeptide 4 reacts in the photochemical reaction, which affects polynucleotides chirality, presumably via quinone methide intermediates that alkylate DNA.


1967 ◽  
Vol 40 (4) ◽  
pp. 1071-1083 ◽  
Author(s):  
A. N. Gent

Abstract Changes in tensile stress afford a simple means of studying the rates of crystallization and the melting temperatures in crosslinked polymers subjected to simple extension. The form and magnitude of the stress changes in networks of trans-polychloroprene are closely similar to those observed for cis-1:4-polyisoprene and cis-l:4-polybutadiene networks. They are in accord with the formation of oriented crystallites and incompatible with folded chain crystallization at extensions as low as 15 per cent. It seems likely that the present networks do not crystallize by chain folding even in the unstretched state. The large increases in rate of crystallization with extension are approximately accounted for by corresponding increases in the equilibrium melting temperature. Direct measurements of the melting temperature show similar rises with extension. The rise in melting temperature is in good agreement with Flory's theoretical treatment of oriented crystallization at extension ratios of three and higher (when the crystallite orientation is complete) for three networks having different degrees of crosslinking. When referred to a constant segmental mobility, namely, that obtaining at Tg+50° C, the rates of crystallization at various extensions obey a common dependence upon the degree of supercooling. This relation is in fair accord with theories of nucleation kinetics, except at the lowest temperatures where there is some indication of the appearance of a new crystal form.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Niels Schlichting ◽  
Felix Reinhardt ◽  
Sven Jager ◽  
Michael Schmidt ◽  
Johannes Kabisch

Abstract The ligase cycling reaction (LCR) is a scarless and efficient method to assemble plasmids from fragments of DNA. This assembly method is based on the hybridization of DNA fragments with complementary oligonucleotides, so-called bridging oligos (BOs), and an experimental procedure of thermal denaturation, annealing and ligation. In this study, we explore the effect of molecular crosstalk of BOs and various experimental parameters on the LCR by utilizing a fluorescence-based screening system. The results indicate an impact of the melting temperatures of BOs on the overall success of the LCR assembly. Secondary structure inhibitors, such as dimethyl sulfoxide and betaine, are shown to negatively impact the number of correctly assembled plasmids. Adjustments of the annealing, ligation and BO-melting temperature further improved the LCR. The optimized LCR was confirmed by validation experiments. Based on these findings, a step-by-step protocol is offered within this study to ensure a routine for high efficient LCR assemblies.


2014 ◽  
Vol 28 (25) ◽  
pp. 1450171 ◽  
Author(s):  
Shi-Wei Ren ◽  
Jing-Wei Sun ◽  
Yan-Zhong Hao

In this paper, by using the classical molecular dynamics method and the GEAM potential, the geometric structure and the melting properties of the 19-atom Ni – Co clusters with different compositions are studied. It is found that all the clusters have the double icosahedron structures although some of the structures are slightly deformed. With the increase of the temperature, a pre-melting phenomenon is observed. The pre-melting temperatures of the pure cobalt and nickel clusters are very close. But on the whole, the pre-melting temperature decreases with the increase of the number of the nickel atom for the mixed clusters. The effects of the substitution atoms on the melting temperature of the clusters are similar to that on the pre-melting temperature although there are some oscillations in the decrease process. The mechanism of these findings are also investigated and analyzed.


1955 ◽  
Vol 28 (3) ◽  
pp. 718-727 ◽  
Author(s):  
Donald E. Roberts ◽  
Leo Mandelkern

Abstract The existence of an equilibrium melting temperature, T0m, at 28 ± 1°, for unstretched natural rubber has been established, using dilatometric methods. The lower melting temperatures previously observed are a consequence of the low temperatures of crystallization and the rapid heating rates employed. From melting point studies of mixtures of the polymer with low molecular-weight diluents, the heat of fusion per repeating unit, ΔHu has been evaluated as 15.3 ± 0.5 cal./g. The values of ΔHu and T0m have then been combined with data of other workers to obtain the following information concerning natural rubber: (1) The variation of melting temperature with applied hydrostatic pressure has been calculated from the Clapeyron equation to be 0.0465° C/atm. (2) The degree of erystallinity resulting from maintaining a sample at 0° until the rate of crystallization is negligible has been calculated, by three independent methods, to be in the range 26 to 31 per cent. (3) Analysis of the stress-strain-temperature relationship has indicated that crystallization is the cause of the large internal energy changes that are observed at relatively high elongations.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Elena V. Chikhirzhina ◽  
Starkova J. Tatiana ◽  
Alexander M. Polyanichko

Interaction of HMGB1 nonhistone chromosomal protein with DNA was studied using circular dichroism spectroscopy and thermal denaturation of DNA. Melting DNA in the complex was shown to be a biphasic process. The characteristic melting temperatures of unbound DNA and the DNA bound to HMGB1 in 0.25 mM EDTA solutions were found to beTmI=44.0±0.5°C andTmII=62.0±1°C, respectively. It was shown that the binding of the HMGB1 molecule affects the melting of the DNA region approximately 30 b.p. long.


Sign in / Sign up

Export Citation Format

Share Document