Isolation and Properties of Yeast Mutants with Highly Efficient Thymidylate Utilization

1976 ◽  
Vol 31 (7-8) ◽  
pp. 468-478 ◽  
Author(s):  
Wolfgang W. Fäth ◽  
Martin Brendel

A screening procedure is presented which allows the isolation of yeast mutants (typ tlr) with highly efficient utilization of exogenous deoxythymidine-5′-monophosphate (5′-dTMP) (>50% ). Data are given concerning the phenomenon of 5′-dTMP utilization in general: (i) The ability of S. cerevisiae to incorporate exogenous 5′-dTMP was found to already be a wild type feature of this yeast, i. e. apparently not to be due to any mutation such as typ , tup, tmp per or tum. Consequently these mutations are interpreted as amplifiers of a pre-given wild type potency. So far eight stages of 5′-dTMP utilization were detected as classified by the optimal 5′-dTMP requirement, with 5′-dTMP biosynthesis blocked, of the corresponding mutant strains isolated. All of them fit well into a mathematical series of the type “2n × 1.5” (n = 0, 1, 2, … , 11), where the product term for n = 11 represents the 5′-dTMP requirement (μg/ml) of the best 5′-dTMP utilizing wild type strain found, (ii) Amplification of the 5′-dTMP utilizing potency obviously is due to any genetically determined alteration of the yeast 5′-dTMP uptaking principle itself or of physiological processes accompanying the monophosphate’s uptake, (iii) The functioning of 5′-dTMP uptake requires acidic (≦ pH 6) conditions in the yeast cell’s outer environment, (iv) Some yeast typ and typ tlr mutants were found to exhibit a more or less pronounced sensitivity towards exogenously offered 5′dTM P. The response of a sensitive strain towards inhibitory concentrations of the nucleotide apparently is co-conditioned by the presence or absence of thymidylate biosynthesis. With 5′-dTMP biosynthesis blocked the 5′-dTMP mediated inhibition is a permanent one and finally leads to the death of a cell. With a functioning thymidylate biosynthesis, in contrast, the inhibition is only temporary, (v) Yeast typ or typ tlr strains were observed to dephosphorylate exogenous 5′-dTMP to thymidine due to a phosphatase activity which cannot be eliminated at pH 7 + 70 mм inorganic phosphate conditions in the growth medium. This 5′-dTMP cleavage obviously occurs outside the cell and does not seem to be correlated both to the monophosphate’s uptake and to the phenomenon of 5′-dTMP sensitivity. The destruction of 5′-dTMP does not disturb (5′-dTMP) DNA-specific labelling.

2004 ◽  
Vol 72 (5) ◽  
pp. 3077-3080 ◽  
Author(s):  
Francesco Iannelli ◽  
Damiana Chiavolini ◽  
Susanna Ricci ◽  
Marco Rinaldo Oggioni ◽  
Gianni Pozzi

ABSTRACT The role of pneumococcal surface protein C (PspC; also called SpsA, CbpA, and Hic) in sepsis by Streptococcus pneumoniae was investigated in a murine infection model. The pspC gene was deleted in strains D39 (type 2) and A66 (type 3), and the mutants were tested by being injected intravenously into mice. The animals infected with the mutant strains showed a significant increase in survival, with the 50% lethal dose up to 250-fold higher than that for the wild type. Our findings indicate that PspC affords a decisive contribution to sepsis development.


2012 ◽  
Vol 80 (4) ◽  
pp. 1593-1605 ◽  
Author(s):  
Mary Ann Pohl ◽  
Sabine Kienesberger ◽  
Martin J. Blaser

ABSTRACTLewis (Le) antigens are fucosylated oligosaccharides present in theHelicobacter pylorilipopolysaccharide. Expression of these antigens is believed to be important forH. pyloricolonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galTis essential for production of type 1 (Leaand Leb) antigens. The upstream genejhp0562, which is present in many but not allH. pyloristrains, is homologous to β-(1,3)galTbut is of unknown function. BecauseH. pyloridemonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5′ and 3′ ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galTnull mutant, but neither native nor recombinantjhp0562can. Mutagenesis ofjhp0562revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galTexpression in all wild-type (WT) and mutant strains tested, whereasjhp0562was not expressed injhp0562null mutants, as expected. Sincejhp0562unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whethergalT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed thatgalTis essential for Lebproduction. In total, these results demonstrate thatgalTandjhp0562have functions that cross the expected Le synthesis pathways and thatjhp0562provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes.


Microbiology ◽  
2002 ◽  
Vol 148 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Manuel I González Carreró ◽  
Félix J Sangari ◽  
Jesús Agüero ◽  
Juan M Garcı́a Lobo

Brucella abortus is known to produce 2,3-dihydroxybenzoate (2,3-DHBA) and to use this catechol as a siderophore to grow under iron-limited conditions. In this study a mutant (BAM41) is described that is deficient in siderophore production by insertion of Tn5 in the virulent B. abortus strain 2308. This mutant was unable to grow on iron-deprived medium and its growth could not be restored by addition of 2,3-DHBA. Production of catecholic compounds by both the Brucella mutant and parental strains under iron-deprivation conditions was assayed by TLC. Two catecholic substances were identified in the supernatant of the parental strain 2308. The faster migrating spot showed the same retention factor (R f) as that of purified 2,3-DHBA. The mutant BAM41 overproduced 2,3-DHBA, but failed to form the slower migrating catechol. This defect could only be complemented by the addition of the slow-migrating catechol from strain 2308. The genomic region containing Tn5 in BAM41 was cloned and the position of the transposon was determined by nucleotide sequencing. The sequence revealed that the insertion had occurred at a gene with homology to Escherichia coli entF, a locus involved in the late steps of the biosynthesis of the complex catecholic siderophore enterobactin. Intracellular survival and growth rates of the B. abortus wild-type and entF mutant strains in mouse-derived J774 macrophages were similar, indicating that production of this siderophore was not essential in this model of infection. It is concluded that B. abortus synthesizes a previously unknown and highly efficient catecholic siderophore, different from 2,3-DHBA, for which the name brucebactin is proposed.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1355-1362 ◽  
Author(s):  
Ardythe A McCracken ◽  
Igor V Karpichev ◽  
James E Ernaga ◽  
Eric D Werner ◽  
Andrew G Dillin ◽  
...  

Saccharomyces cerevisiae mutants deficient in degradation of alpha-1-proteinase inhibitor Z (A1PiZ) have been isolated and genetically characterized. Wild-type yeast expressing A1PiZ synthesize an ER form of this protein that is rapidly degraded by an intracellular proteolytic process known as ER-associated protein degradation (ERAD). The mutant strains were identified after treatment with EMS using a colony blot immunoassay to detect colonies that accumulated high levels of A1PiZ. A total of 120,000 colonies were screened and 30 putative mutants were identified. The level of A1PiZ accumulation in these mutants, measured by ELISA, ranged from two to 11 times that of A1PiZ in the parent strain. Further studies demonstrated that the increased levels of A1PiZ in most of the mutant strains was not the result of defective secretion or elevated A1PiZ mRNA. Pulse chase experiments indicated that A1PiZ was stabilized in several strains, evidence that these mutants are defective in ER-associated protein degradation. Genetic analyses revealed that most of the mutations were recessive, ∼30% of the mutants characterized conformed to simple Mendelian inheritance, and at least seven complementation groups were identified.


2016 ◽  
Author(s):  
Meital Oren-Suissa ◽  
Tamar Gattegno ◽  
Veronika Kravtsov ◽  
Benjamin Podbilewicz

AbstractInjury triggers regeneration of axons and dendrites. Research identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow towards each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow towards each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a cell-autonomous process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites from without. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury inC. elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. Intrinsic EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries.Author summaryNeurons in the central nervous system have very limited regenerative ability, they fail to remodel following amputation and only in some invertebrates, axons can repair themselves by fusion. Some genetic pathways have been identified for axonal regeneration but few studies exist on dendrite regeneration following injury. To determine how neurons regenerate dendrites following injury we study theC. elegansPVD polymodal neurons that display an arborized pattern of repetitive menorah-like structures. We injure dendrites by laser microsurgery, follow their fate and show that broken primary dendrites often regenerate via fusion. We describe how PVD dendrites regenerate and present roles for EFF-1 and AFF-1 proteins in fusion and remodeling of menorahs. Menorahs lose self-avoidance and AFF-1 fuses them, bypassing the injury site. Branch sprouting, EFF-1-mediated pruning, and arbor simplification completes regeneration. When auto-fusion fails the distal arbor degenerates. Surprisingly, AFF-1 acts non-cell autonomously to mediate dendrite fusion. We propose that extracellular vesicles derived from the lateral epidermis fuse severed dendrites in a process reminiscent of enveloped virus-mediated cell fusion without infection.


Genetics ◽  
1990 ◽  
Vol 126 (2) ◽  
pp. 309-315
Author(s):  
J D Hudson ◽  
H Feilotter ◽  
P G Young

Abstract In Schizosaccharomyces pombe, cdc25 is a cell cycle regulated inducer of mitosis. wee1 and phenotypically wee alleles of cdc2 are epistatic to cdc25. Mutant alleles of a new locus, stf1 (suppressor of twenty-five), identified in a reversion analysis of conditionally lethal cdr1-76 cdc25-22 and cdr2-96 cdc25-22 double mutant strains, also suppress both temperature-sensitive and gene disruption alleles of cdc25. These mutants, by themselves, are phenotypically indistinguishable from wild type strains; hence they represent the first known mutations that are epistatic to cdc25 and do not display a wee phenotype. stf1 genetically interacts with other elements of mitotic control in S. pombe. stf1-1 is additive with wee1-50, cdc2-1w and cdc2-3w for suppression of cdc25-22. Also, like wee1- and cdc2-w, stf1- suppression of cdc25 is reversed by overexpression of the putative type 1 protein phosphatase bws1+/dis2+. Interaction with various mutants and plasmid overexpression experiments suggest that stf1 does not operate either upstream or downstream of wee1. Similarly, it does not operate through cdc25 since it rescues the disruption. stf1 appears to encode an important new element of mitotic control.


2016 ◽  
Vol 113 (14) ◽  
pp. 3791-3796 ◽  
Author(s):  
Friederike Zunke ◽  
Lisa Andresen ◽  
Sophia Wesseler ◽  
Johann Groth ◽  
Philipp Arnold ◽  
...  

The lysosomal integral membrane protein type-2 (LIMP-2) plays a pivotal role in the delivery of β-glucocerebrosidase (GC) to lysosomes. Mutations in GC result in Gaucher's disease (GD) and are the major genetic risk factor for the development of Parkinson's disease (PD). Variants in the LIMP-2 gene cause action myoclonus-renal failure syndrome and also have been linked to PD. Given the importance of GC and LIMP-2 in disease pathogenesis, we studied their interaction sites in more detail. Our previous data demonstrated that the crystal structure of LIMP-2 displays a hydrophobic three-helix bundle composed of helices 4, 5, and 7, of which helix 5 and 7 are important for ligand binding. Here, we identified a similar helical motif in GC through surface potential analysis. Coimmunoprecipitation and immunofluorescence studies revealed a triple-helical interface region within GC as critical for LIMP-2 binding and lysosomal transport. Based on these findings, we generated a LIMP-2 helix 5-derived peptide that precipitated and activated recombinant wild-type and GD-associated N370S mutant GC in vitro. The helix 5 peptide fused to a cell-penetrating peptide also activated endogenous lysosomal GC and reduced α-synuclein levels, suggesting that LIMP-2–derived peptides can be used to activate endogenous as well as recombinant wild-type or mutant GC efficiently. Our data also provide a structural model of the LIMP-2/GC complex that will facilitate the development of GC chaperones and activators as potential therapeutics for GD, PD, and related synucleinopathies.


2021 ◽  
Author(s):  
Resham L Gurung ◽  
Rajkumar Dorajoo ◽  
Yiamunaa M ◽  
Ling Wang ◽  
Sylvia Liu ◽  
...  

Abstract Background Chronic kidney disease (CKD) is common among type 2 diabetes (T2D) and increases the risk of kidney failure and cardiovascular diseases. Shorter leukocyte telomere length is associated with CKD in patients with T2D. We previously reported single nucleotide polymorphisms (SNPs) associated with leukocyte telomere length in Asian population. In this study, we elucidated the association of these SNPs with CKD in patients with T2D using Mendelian randomization (MR) approach. Methods The cross-sectional association of 16 leukocyte telomere length SNPs with CKD, defined as an estimated glomerular filtration rate of less than 60 ml/min/1.73m2 was assessed among 4,768 (1,628 cases, 3,140 controls) participants in the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes and Diabetic Nephropathy cohorts. MR analysis was performed using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analysed. Results Genetically determined shorter leukocyte telomere length was associated with increased risk of CKD in patients with T2D (meta-IVW adjusted odds ratio = 1.51 [95% confidence interval, 1.12 - 2.12; P = 0.007; Phet= 0.547]). Similar results were obtained following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy (β  =  0.010, P = 0.751). Conclusions Our findings suggest that genetically determined leukocyte telomere length is associated with CKD in patients with T2D. Further studies are warranted to elucidate the causal role of telomere length in CKD progression.


Sign in / Sign up

Export Citation Format

Share Document