scholarly journals Extrinsic repair of injured dendrites as a paradigm for regeneration by fusion

2016 ◽  
Author(s):  
Meital Oren-Suissa ◽  
Tamar Gattegno ◽  
Veronika Kravtsov ◽  
Benjamin Podbilewicz

AbstractInjury triggers regeneration of axons and dendrites. Research identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow towards each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow towards each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a cell-autonomous process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites from without. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury inC. elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. Intrinsic EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries.Author summaryNeurons in the central nervous system have very limited regenerative ability, they fail to remodel following amputation and only in some invertebrates, axons can repair themselves by fusion. Some genetic pathways have been identified for axonal regeneration but few studies exist on dendrite regeneration following injury. To determine how neurons regenerate dendrites following injury we study theC. elegansPVD polymodal neurons that display an arborized pattern of repetitive menorah-like structures. We injure dendrites by laser microsurgery, follow their fate and show that broken primary dendrites often regenerate via fusion. We describe how PVD dendrites regenerate and present roles for EFF-1 and AFF-1 proteins in fusion and remodeling of menorahs. Menorahs lose self-avoidance and AFF-1 fuses them, bypassing the injury site. Branch sprouting, EFF-1-mediated pruning, and arbor simplification completes regeneration. When auto-fusion fails the distal arbor degenerates. Surprisingly, AFF-1 acts non-cell autonomously to mediate dendrite fusion. We propose that extracellular vesicles derived from the lateral epidermis fuse severed dendrites in a process reminiscent of enveloped virus-mediated cell fusion without infection.

Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2381-2389
Author(s):  
Timothy R. Varney ◽  
Hoa Ho ◽  
Chere’ Petty ◽  
Daphne D. Blumberg

The cellular slime mold, Dictyostelium discoideum is a non-metazoan organism, yet we now demonstrate that a disintegrin domain-containing protein, the product of the ampA gene, plays a role in cell type specification. Disintegrin domain-containing proteins are involved in Notch signaling in Drosophila and C. elegans via an ectodomain shedding mechanism that depends on a metalloprotease domain. The Dictyostelium protein lacks a metalloprotease domain. Nonetheless, analysis of cell type specific reporter gene expression during development of the ampA null strain identifies patterning defects that define two distinct roles for the AmpA protein in specifying cell fate. In the absence of a functional ampA gene, cells prematurely specify as prespore cells. Prestalk cell differentiation and migration are delayed. Both of these defects can be rescued by the inclusion of 10% wild-type cells in the developing null mutant aggregates, indicating that the defect is non-cell autonomous. The ampA gene is also demonstrated to be necessary in a cell-autonomous manner for the correct localization of anterior-like cells to the upper cup of the fruiting body. When derived from ampA null cells, the anterior-like cells are unable to localize to positions in the interior of the developing mounds. Wild-type cells can rescue defects in morphogenesis by substituting for null cells when they differentiate as anterior-like cells, but they cannot rescue the ability of ampA null cells to fill this role. Thus, in spite of its simpler structure, the Dictyostelium ampA protein carries out the same diversity of functions that have been observed for the ADAM and ADAMTS families in metazoans.


Cell ◽  
1987 ◽  
Vol 51 (6) ◽  
pp. 1071-1078 ◽  
Author(s):  
Leon Avery ◽  
H.Robert Horvitz
Keyword(s):  
A Cell ◽  

Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 515-526 ◽  
Author(s):  
S.E. Baird ◽  
D.H. Fitch ◽  
I.A. Kassem ◽  
S.W. Emmons

The developmental process that determines the arrangement of ray sensilla in the Caenorhabditis elegans male tail has been studied. It is shown that the adult arrangement of rays is determined by the placement of ray cells at specific sites in the epidermis of the last larval (L4) stage. Placement of ray cells at specific epidermal sites results from the generation of neurons and support cells in the epidermis near to their final positions, and the subsequent refinement of these positions by an active mechanism involving specific cellular associations. Positions of ray cells and adjacent epidermal cells have been studied during ray development by means of indirect immunofluorescence staining with an antibody to a cell junctional antigen. Mutations are described in six genes that alter the adult arrangement of the rays, frequently resulting in fusion of rays. Changes in the adult pattern of rays in mutants appear to result from prior changes in the epidermal positions of ray cells, and for two mutants it is suggested that this may be due to the inappropriate clustering of processes from neurons and support cells of adjacent rays. Development of the wild-type arrangement of rays appears to require the specification of molecular differences between the rays that affect the specificity of their cellular associations.


1976 ◽  
Vol 31 (7-8) ◽  
pp. 468-478 ◽  
Author(s):  
Wolfgang W. Fäth ◽  
Martin Brendel

A screening procedure is presented which allows the isolation of yeast mutants (typ tlr) with highly efficient utilization of exogenous deoxythymidine-5′-monophosphate (5′-dTMP) (>50% ). Data are given concerning the phenomenon of 5′-dTMP utilization in general: (i) The ability of S. cerevisiae to incorporate exogenous 5′-dTMP was found to already be a wild type feature of this yeast, i. e. apparently not to be due to any mutation such as typ , tup, tmp per or tum. Consequently these mutations are interpreted as amplifiers of a pre-given wild type potency. So far eight stages of 5′-dTMP utilization were detected as classified by the optimal 5′-dTMP requirement, with 5′-dTMP biosynthesis blocked, of the corresponding mutant strains isolated. All of them fit well into a mathematical series of the type “2n × 1.5” (n = 0, 1, 2, … , 11), where the product term for n = 11 represents the 5′-dTMP requirement (μg/ml) of the best 5′-dTMP utilizing wild type strain found, (ii) Amplification of the 5′-dTMP utilizing potency obviously is due to any genetically determined alteration of the yeast 5′-dTMP uptaking principle itself or of physiological processes accompanying the monophosphate’s uptake, (iii) The functioning of 5′-dTMP uptake requires acidic (≦ pH 6) conditions in the yeast cell’s outer environment, (iv) Some yeast typ and typ tlr mutants were found to exhibit a more or less pronounced sensitivity towards exogenously offered 5′dTM P. The response of a sensitive strain towards inhibitory concentrations of the nucleotide apparently is co-conditioned by the presence or absence of thymidylate biosynthesis. With 5′-dTMP biosynthesis blocked the 5′-dTMP mediated inhibition is a permanent one and finally leads to the death of a cell. With a functioning thymidylate biosynthesis, in contrast, the inhibition is only temporary, (v) Yeast typ or typ tlr strains were observed to dephosphorylate exogenous 5′-dTMP to thymidine due to a phosphatase activity which cannot be eliminated at pH 7 + 70 mм inorganic phosphate conditions in the growth medium. This 5′-dTMP cleavage obviously occurs outside the cell and does not seem to be correlated both to the monophosphate’s uptake and to the phenomenon of 5′-dTMP sensitivity. The destruction of 5′-dTMP does not disturb (5′-dTMP) DNA-specific labelling.


Author(s):  
Hannah R. Brown ◽  
Tammy L. Donato ◽  
Halldor Thormar

Measles virus specific immunoglobulin G (IgG) has been found in the brains of patients with subacute sclerosing panencephalitis (SSPE), a slowly progressing disease of the central nervous system (CNS) in children. IgG/albumin ratios indicate that the antibodies are synthesized within the CNS. Using the ferret as an animal model to study the disease, we have been attempting to localize the Ig's in the brains of animals inoculated with a cell associated strain of SSPE. In an earlier report, preliminary results using Protein A conjugated to horseradish peroxidase (PrAPx) (Dynatech Diagnostics Inc., South Windham, ME.) to detect antibodies revealed the presence of immunoglobulin mainly in antibody-producing plasma cells in inflammatory lesions and not in infected brain cells.In the present experiment we studied the brain of an SSPE ferret with neutralizing antibody titers of 1:1024 in serum and 1:512 in CSF at time of sacrifice 7 months after i.c. inoculation with SSPE measles virus-infected cells. The animal was perfused with saline and portions of the brain and spinal cord were immersed in periodate-lysine-paraformaldehyde (P-L-P) fixative. The ferret was not perfused with fixative because parts of the brain were used for virus isolation.


2021 ◽  
Vol 13 ◽  
Author(s):  
Abdullah Almotayri ◽  
Jency Thomas ◽  
Mihiri Munasinghe ◽  
Markandeya Jois

Background: The antidepressant mianserin has been shown to extend the lifespan of Caenorhabditis elegans (C. elegans), a well-established model organism used in aging research. The extension of lifespan in C. elegans was shown to be dependent on increased expression of the scaffolding protein (ANK3/unc-44). In contrast, antidepressant use in humans is associated with an increased risk of death. The C. elegans in the laboratory are fed Escherichia coli (E. coli), a diet high in protein and low in carbohydrate, whereas a typical human diet is high in carbohydrates. We hypothesized that dietary carbohydrates might mitigate the lifespan-extension effect of mianserin. Objective: To investigate the effect of glucose added to the diet of C. elegans on the lifespan-extension effect of mianserin. Methods: Wild-type Bristol N2 and ANK3/unc-44 inactivating mutants were cultured on agar plates containing nematode growth medium and fed E. coli. Treatment groups included (C) control, (M50) 50 μM mianserin, (G) 73 mM glucose, and (M50G) 50 μM mianserin and 73 mM glucose. Lifespan was determined by monitoring the worms until they died. Statistical analysis was performed using the Kaplan-Meier version of the log-rank test. Results: Mianserin treatment resulted in a 12% increase in lifespan (P<0.05) of wild-type Bristol N2 worms but reduced lifespan by 6% in ANK3/unc-44 mutants, consistent with previous research. The addition of glucose to the diet reduced the lifespan of both strains of worms and abolished the lifespan-extension by mianserin. Conclusion: The addition of glucose to the diet of C. elegans abolishes the lifespan-extension effects of mianserin.


2019 ◽  
Vol 10 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

NALCN (Na+leak channel, non-selective) is a conserved, voltage-insensitive cation channel that regulates resting membrane potential and neuronal excitability. UNC79 and UNC80 are key regulators of the channel function. However, the behavioral effects of the channel complex are not entirely clear and the neurons in which the channel functions remain to be identified. In a forward genetic screen for C. elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated multiple loss-of-function mutations in unc-80 and unc-79. C. elegans NALCN mutants exhibited similarly defective MeSa avoidance. Interestingly, NALCN, unc-80 and unc-79 mutants all showed wild type-like responses to other attractive or repelling odorants, suggesting that NALCN does not broadly affect odor detection or related forward and reversal behaviors. To understand in which neurons the channel functions, we determined the identities of a subset of unc-80-expressing neurons. We found that unc-79 and unc-80 are expressed and function in overlapping neurons, which verified previous assumptions. Neuron-specific transgene rescue and knockdown experiments suggest that the command interneurons AVA and AVE and the anterior guidepost neuron AVG can play a sufficient role in mediating unc-80 regulation of the MeSa avoidance. Though primarily based on genetic analyses, our results further imply that MeSa might activate NALCN by direct or indirect actions. Altogether, we provide an initial look into the key neurons in which the NALCN channel complex functions and identify a novel function of the channel in regulating C. elegans reversal behavior through command interneurons.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 201-208 ◽  
Author(s):  
Andrew Singson ◽  
Katherine L Hill ◽  
Steven W L’Hernault

Abstract Hermaphrodite self-fertilization is the primary mode of reproduction in the nematode Caenorhabditis elegans. However, when a hermaphrodite is crossed with a male, nearly all of the oocytes are fertilized by male-derived sperm. This sperm precedence during reproduction is due to the competitive superiority of male-derived sperm and results in a functional suppression of hermaphrodite self-fertility. In this study, mutant males that inseminate fertilization-defective sperm were used to reveal that sperm competition within a hermaphrodite does not require successful fertilization. However, sperm competition does require normal sperm motility. Additionally, sperm competition is not an absolute process because oocytes not fertilized by male-derived sperm can sometimes be fertilized by hermaphrodite-derived sperm. These results indicate that outcrossed progeny result from a wild-type cross because male-derived sperm are competitively superior and hermaphrodite-derived sperm become unavailable to oocytes. The sperm competition assays described in this study will be useful in further classifying the large number of currently identified mutations that alter sperm function and development in C. elegans.


2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


Sign in / Sign up

Export Citation Format

Share Document