X-Ray Studies on Phospholipid Bilayers. XII. Interactions of Pentachlorophenol with Myelin

1992 ◽  
Vol 47 (7-8) ◽  
pp. 601-607 ◽  
Author(s):  
M. Suwalsky ◽  
F. Villena ◽  
G. Montoya ◽  
C. Garrido ◽  
I. Sánchez ◽  
...  

Pentachlorophenol (PCP) is a widely used pesticide, particularly for the preservation of wood. Given its high toxicity and resistance to degradation it has become a dangerous environmental pollulant. Due to its high lipophilicity, PCP is able to partition into the lipid bilayer of cell membranes disrupting several vital functions. The present research was concerned with the effects that the chronic administration of PCP could produce in vivo to the sciatic nerve of rats. X-ray diffraction patterns obtained from freshly dissected and dried sciatic nerves of PCP treated rats did not show significant differences in their reflections with respect to those present in the patterns from untreated animals. However, morphological studies performed by optical and electron microscopy showed degenerative changes in about 10% of the A and B type of nerve fibers.

2022 ◽  
Vol 1048 ◽  
pp. 141-146
Author(s):  
Madihally Nagaraja ◽  
Geetha Thippeswamy ◽  
Sushma Prashanth ◽  
Jayadev Pattar ◽  
Mahesh Hampapatna Mahesh

Composite of polyaniline-MgCl has been synthesized using oxidative polymerization method. Synthesized samples were characterized for structural analysis using FTIR and XRD. Morphological studies were carried by SEM micrographs. Current-Voltage (I-V) properties are obtained through Kiethly source meter. FTIR spectrum of polyaniline-MgCl composite indicates all the characteristic peaks of polyaniline. X-ray diffraction patterns represented the amorphous nature of polyaniline-MgCl composite. SEM micrographs confirmed the presence of MgCl particles in polyaniline matrix. I-V characteristics have shown the ohmic type behavior of polyaniline and polyaniline-MgCl composite.


2007 ◽  
Vol 361-363 ◽  
pp. 155-158 ◽  
Author(s):  
Jung Jae Kim ◽  
Hae Jung Kim ◽  
Kang Sik Lee

A edible cuttlefish(Zoological name : Sepia esculenta) bone has a porous structure with all pores interconnected The purpose of this research is to develop porous hydroxyapatite prepared by hydrothermal treatment from cuttlefish bone and evaluate the biocompatibility using undecalcified materials through the in-vivo test of rabbits. In this study, the phase and substructure of a porous hydroxyapatite, prepared by hydrothermal treatment using edible cuttlefish bone as a calcium source, has been confirmed by X-ray diffractometer and scanning electronic microscope. After preparing the specimens with 5mm diameter and 7mm length, the specimens were implanted into the femoral condyles of rabbits. Each rabbits were sacrificed at each time period of 1, 2, 3, 4 weeks after operation, respectively and the stained section was examined by a transmission light microscope. The X-ray diffraction patterns of the edible cuttlefish bone was confirm for aragonite phase and of the sample after hydrothermal treatment showed mostly into hydroxyapatite phase. There was more bone density increase in porous HA rod around implant site than natural edible cuttlefish bone. Because the edible cuttlefish bone is a very pure and good calcium source, porous hydroxyapatite developed from this study is expected to be a biomaterial having a good biocompatibility to be used as a suitable bone substitute.


2014 ◽  
Vol 70 (a1) ◽  
pp. C570-C570
Author(s):  
Daniel Passon ◽  
Arjen Jakobi ◽  
Francesco Stellato ◽  
Mengning Liang ◽  
Kevin Knoops ◽  
...  

Peroxisomes are membrane-enclosed organelles in eukaryotic cells with important roles in lipid metabolism and the scavenging of reactive oxygen species. Peroxisomes are capable of carrying an unusually high load of proteins, which under appropriate nutrient conditions results in the in situ crystallization of peroxisomal proteins in several yeast species and vertebrate hepatocytes [1,2]. In the methylotrophic yeast H.polymorpha, the predominant peroxisomal protein alcohol/methanol oxidase (AO) oligomerizes into octameric assemblies with a molecular mass of 600 kDa that spontaneously form 200-500 nm crystallites within peroxisomes [1]. We exposed H.polymorpha cell suspensions containing peroxisome-confined AO crystallites to femtosecond X-ray pulses at the Coherent X-ray Imaging (CXI) experimental endstation at the Linac Coherent Light Source. Peak detection routines mining the resulting scattering profiles identified >5000 Bragg-sampled diffraction patterns, providing the proof of concept that background scattering from the cells does not deteriorate the signal-to-noise ratio to an extent precluding observation of diffraction from individual AO crystallites. Summation patterns assembled from the individual frames match low-resolution powder diffraction patterns from concentrated suspensions of purified peroxisomes collected at the P14 beamline at the PETRAIII synchrotron, confirming that the observed diffraction mainly results from Bragg scattering of peroxisomal crystallites. To the best of our knowledge our data are the first to report room temperature X-ray diffraction from functional protein crystals in their native cellular environment. Currently the maximum resolution achieved in the diffraction patterns is limited to 20-15 Å. Future work will need to address improved sample preparation protocols in order to assess whether diffraction to a resolution sufficient to permit structure solution can be obtained. Protein crystal formation in vivo has been observed under physiological or pathological conditions in a number of other systems [3]. We hope that our results will help to establish serial femtosecond X-ray diffraction (SFX) as a method for structural characterization of cellular structures with crystalline content and provide a proof of concept for using in situ crystallization of proteins as a means to generate nanocrystalline samples for SFX.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Author(s):  
J. P. Robinson ◽  
P. G. Lenhert

Crystallographic studies of rabbit Fc using X-ray diffraction patterns were recently reported. The unit cell constants were reported to be a = 69. 2 A°, b = 73. 1 A°, c = 60. 6 A°, B = 104° 30', space group P21, monoclinic, volume of asymmetric unit V = 148, 000 A°3. The molecular weight of the fragment was determined to be 55, 000 ± 2000 which is in agreement with earlier determinations by other methods.Fc crystals were formed in water or dilute phosphate buffer at neutral pH. The resulting crystal was a flat plate as previously described. Preparations of small crystals were negatively stained by mixing the suspension with equal volumes of 2% silicotungstate at neutral pH. A drop of the mixture was placed on a carbon coated grid and allowed to stand for a few minutes. The excess liquid was removed and the grid was immediately put in the microscope.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


1985 ◽  
Vol 50 (10) ◽  
pp. 2139-2145
Author(s):  
Alexander Muck ◽  
Eva Šantavá ◽  
Bohumil Hájek

The infrared spectra and powder X-ray diffraction patterns of polycrystalline YPO4-YCrO4 samples are studied from the point of view of their crystal symmetry. Mixed crystals of the D4h19 symmetry are formed over the region of 0-30 mol.% YPO4 in YCrO4. The Td → D2d → D2 or C2v(GS eff) correlation is appropriate for both PO43- and CrO43- anions.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Banko ◽  
Phillip M. Maffettone ◽  
Dennis Naujoks ◽  
Daniel Olds ◽  
Alfred Ludwig

AbstractWe apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 312
Author(s):  
Florian Lauraux ◽  
Stéphane Labat ◽  
Sarah Yehya ◽  
Marie-Ingrid Richard ◽  
Steven J. Leake ◽  
...  

The simultaneous measurement of two Bragg reflections by Bragg coherent X-ray diffraction is demonstrated on a twinned Au crystal, which was prepared by the solid-state dewetting of a 30 nm thin gold film on a sapphire substrate. The crystal was oriented on a goniometer so that two lattice planes fulfill the Bragg condition at the same time. The Au 111 and Au 200 Bragg peaks were measured simultaneously by scanning the energy of the incident X-ray beam and recording the diffraction patterns with two two-dimensional detectors. While the former Bragg reflection is not sensitive to the twin boundary, which is oriented parallel to the crystal–substrate interface, the latter reflection is only sensitive to one part of the crystal. The volume ratio between the two parts of the twinned crystal is about 1:9, which is also confirmed by Laue microdiffraction of the same crystal. The parallel measurement of multiple Bragg reflections is essential for future in situ and operando studies, which are so far limited to either a single Bragg reflection or several in series, to facilitate the precise monitoring of both the strain field and defects during the application of external stimuli.


Sign in / Sign up

Export Citation Format

Share Document