Differential Production of Tropane Alkaloids in Hairy Roots and in vitro Cultured Two Accessions of Atropa belladonna L. under Nitrate Treatments

2010 ◽  
Vol 65 (5-6) ◽  
pp. 373-379 ◽  
Author(s):  
Najmeh Ahmadian Chashmi ◽  
Mozafar Sharifi ◽  
Farah Karimi ◽  
Hasan Rahnama

Plants are a potential source of a large number of valuable secondary metabolites. In vitro cultures are being considered as an alternative to agricultural processes for studying valuable secondary metabolites. In this way, nutritive factors are important parameters influencing the production of these compounds in plants. Effects of nitrate concentrations (KNO3) on the production of two tropane alkaloids, hyoscyamine and scopolamine, and the growth of aerial parts and roots of two in vitro propagated accessions of Atropa belladonna and hairy roots were investigated. As hairy roots cultures are able to keep a stable production of alkaloids over long periods of subculturing, they are considered as an interesting option for the study of alkaloid biosynthesis. A hairy roots culture of Atropa belladonna was established by transformation with Agrobacterium rhizogenes strain AR15834. The results of our study showed that a rise in KNO3 concentration caused a decline in hairy roots growth, and had a remarkable effect on the alkaloid content. The alkaloid concentrations obtained in the hairy roots were 3 - 20 times higher than that in the plants at 35 mM of KNO3. Increasing the nitrate concentration in the medium of hairy roots also improved the hyoscyamine/scopolamine ratio, while it increased the scopolamine/hyoscyamine ratio in the studied plants.

2019 ◽  
pp. 1-4 ◽  
Author(s):  
Hasan Kırmızıbekmez ◽  
Murat Erdoğan ◽  
Norbert Kúsz ◽  
Nursenem Karaca ◽  
Umur Erdem ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Hanae Naceiri Mrabti ◽  
Latifa Doudach ◽  
Naoual El Menyiy ◽  
Mohammed Bourhia ◽  
Ahmad Mohammad Salamatullah ◽  
...  

Thymus broussonetii Boiss (T. broussonetii) is a rare medicinal and aromatic plant. It is widely used in traditional medicine to treat several diseases, including diarrhea, fever, cough, irritation, skin diseases, rheumatism, respiratory ailments, influenza, and digestion problems. In this review, we have critically summarized previous data on T. broussonetii about its phytochemistry, botanical and geographical distribution, toxicological investigation, and pharmacological properties. Using scientific research databases such as Wiley Online, SciFinder, ScienceDirect, PubMed, SpringerLink, Web of Science, Scopus Wiley Online, and Google Scholar, the data on T. broussonetii were collected and discussed. The presented data regrouped bioactive compounds and biological activities of T. broussonetii. The findings of this work showed that essential oils and extracts of T. broussonetii exhibited numerous pharmacological activities (in vitro and in vivo), particularly antibacterial, antifungal, antioxidant, anticancer, anti-inflammatory, insecticidal, antipyretic, antinociceptive, and immunological and behavioral effects. While toxicological studies of T. broussonetii essential oils and extracts are lacking, modern scientific tools revealed the presence of different classes of secondary metabolites such as terpenoids, alkaloids, flavonoids, tannins, coumarins, quinones, carotenoids, and steroids. T. broussonetii essential oils, especially from the aerial parts, exhibited potent antibacterial, antifungal, and antioxidant effects. An in-depth toxicological investigation is needed to validate the efficacy and safety of T. broussonetii extracts and essential oils and their secondary metabolites. However, further pharmacokinetic and pharmacodynamic studies should be performed to validate its bioavailability.


2019 ◽  
Vol 6 (4) ◽  
pp. 533-540
Author(s):  
Nabila Benslimani ◽  
Madjda Khelifi-Slaoui ◽  
Abdelkader Morsli ◽  
Amar Djerrad ◽  
Ezz Al-Dein Al-Ramamneh ◽  
...  

Tropane alkaloids are a group of secondary metabolites occurring naturally in Solanaceae family as Atropa belladona, Datura stramonium, Mandragora officinalis, and Hyoscyamus niger. These molecules have valuable therapeutic applications, for example, atropine and hyoscyamine are utilized as antimuscarinic besides being stomach and intestinal diseases drugs. Plants of the Solanaceae family can provide a natural yet less expensive source of these compounds. Hitherto, in order to emphasize these metabolites biosynthesis, D. stramonium seeds were irradiated using a cobalt-60 source of gamma rays of 5 to 80 Gy and germinated in vitro on MS medium in growth controlled chamber. Mutagenesis of D. stramonium seeds was attempted aiming at obtaining plants from in vitro source that are genetically variable for enhancing the biosynthesis of secondary metabolites, namely alkaloids. Results indicated that D. stramonium seeds exhibited a good radiosensitivity and the mutagen damage index GR (30-50) for D. stramonium was determined at 80 Gy. The Characterization of alkaloids (Atropine and hyoscyamine) was done by infrared spectroscopy which showed that alkaloids content of the irradiated seeds is altered by irradiation as the reference bands were not found with all doses used. In addition, seedlings grown from irradiated in vitro seeds exhibited remarkable morphological variations that varied based on the employed dose of gamma rays. These findings permitted the selection of the optimal irradiation dose (80 Gy) to induce mutations that are likely to prompt changes at genetic and metabolic level of the targeted alkaloids.


Author(s):  
Fumihito Hasebe ◽  
Honoka Yuba ◽  
Takashi Hashimoto ◽  
Kazuki Saito ◽  
Nobutaka Funa ◽  
...  

Abstract Tropane alkaloids, including clinically important hyoscyamine and scopolamine, are produced in the roots of medicinal plant species, such as Atropa belladonna, from the Solanaceae family. Recent molecular and genomic approaches have advanced our understanding of the metabolic enzymes involved in tropane alkaloid biosynthesis. A non-canonical type III polyketide synthase (PKS), pyrrolidine ketide synthase (PYKS), catalyzes a two-step decarboxylative reaction, which involves imine-ketide condensation indispensable to tropane skeleton construction. In this study, we generated pyks mutant A. belladonna hairy roots via CRISPR/Cas9-mediated genome editing and analyzed the metabolic consequences of the loss of PYKS activity on tropane alkaloids, providing insights into a crucial role of the scaffold-forming reaction in the biosynthetic pathway.


2016 ◽  
Vol 194 ◽  
pp. 55-60 ◽  
Author(s):  
Karuppiah Bhuvaneshwari ◽  
Ananda Gokulanathan ◽  
Malayandi Jayanthi ◽  
Vaithiyanathan Govindasamy ◽  
Luigi Milella ◽  
...  

2021 ◽  
Vol 2 (11) ◽  
pp. 1117-1120
Author(s):  
Waill A Elkhateeb ◽  
Ghoson M Daba

Background: Emerging of microbial resistance, spread of life-threatening diseases, and biological control of pathogens destroying economically important crops, are serious problems that encourage scientists to search for unusual sources for novel compounds with biological activities. Fungi are promising sources for such compounds due to their ability to produce variety of secondary metabolites that could be, if truly investigated, the solution for currently serious problems. Aim: The aim of this review is to highlight the diversity of compounds produced by endophytic Stemphylium and Ulocladium and represents their ability to produce biologically diverse metabolites. Materials and methods: This was a narrative review. A comprehensive literature search was done using PubMed, Google Scholar, Scopus, and EMBASE using the keywords, Stemphylium; Ulocladium; Secondary metabolites; biological activities. Results: Many studies reported that the endophytic Ulocladium especially, Ulocladium atrum Preuss, showed promising biocontrol activity against Botrytis cinerea on crops cultivated in the greenhouse and the field. The endophytic fungus Stemphylium especially, Stemphylium globuliferum was isolated from stem tissues of the Moroccan medicinal plant Mentha pulegium. Extracts of the fungus exhibited significant cytotoxicity when tested in vitro against L5178Y cells. Conclusion: Endophytic fungi are a noble and consistent source of unique natural mixtures with a high level of biodiversity and may also yield several compounds of pharmaceutical significance, which is currently attracting scientific surveys worldwide. Every study conducted on Stemphylium and Ulocladium resulted in discovery of new metabolites or pointing to a possible application, which made Stemphylium and Ulocladium species potential source of pharmaceuticals and attracted attention for further investigations of their biological control.


2014 ◽  
Vol 69 (2) ◽  
pp. 131-136 ◽  
Author(s):  
Katarzyna Floryanowicz-Czekalska ◽  
Halina Wysokińska

Genetic engineering has allowed the production of plants and in vitro cultures with an altered content of secondary metabolites. In the present work it is hoped to give some detailed background information on obtaining bioactive compounds based on the use of genetically transformed shoots and the whole plants. <em>Agrobacterium tumefaciens</em>-mediated shoots have recently been a matter of great interest as a source of chemicals synthesized in the aerial parts of plants. The possibilities for the future exploitation of <em>Agrobacterium tumefaciens</em> transformation techniques are enormous. However, we need more knowledge of genes and enzymes controlling secondary metabolic synthesis.


2013 ◽  
Vol 12 (2) ◽  
pp. 130 ◽  
Author(s):  
HananA Al-Ashaal ◽  
MonaE Aboutabl ◽  
YousreyaA Maklad ◽  
AhmedA El-Beih

Sign in / Sign up

Export Citation Format

Share Document