Excess Postexercise Oxygen Consumption After High-Intensity and Sprint Interval Exercise, and Continuous Steady-State Exercise

2016 ◽  
Vol 30 (11) ◽  
pp. 3090-3097 ◽  
Author(s):  
Wesley J. Tucker ◽  
Siddhartha S. Angadi ◽  
Glenn A. Gaesser
2019 ◽  
Vol 44 (5) ◽  
pp. 557-566 ◽  
Author(s):  
Penelope Larsen ◽  
Frank Marino ◽  
Kerri Melehan ◽  
Kym J. Guelfi ◽  
Rob Duffield ◽  
...  

The aim of this study was to compare the effect of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on sleep characteristics, appetite-related hormones, and eating behaviour. Eleven overweight, inactive men completed 2 consecutive nights of sleep assessments to determine baseline (BASE) sleep stages and arousals recorded by polysomnography (PSG). On separate afternoons (1400–1600 h), participants completed a 30-min exercise bout: either (i) MICE (60% peak oxygen consumption) or (ii) HIIE (60 s of work at 100% peak oxygen consumption: 240 s of rest at 50% peak oxygen consumption), in a randomised order. Measures included appetite-related hormones (acylated ghrelin, leptin, and peptide tyrosine tyrosine) and glucose before exercise, 30 min after exercise, and the next morning after exercise; PSG sleep stages; and actigraphy (sleep quantity and quality); in addition, self-reported sleep and food diaries were recorded until 48 h after exercise. There were no between-trial differences for time in bed (p = 0.19) or total sleep time (p = 0.99). After HIIE, stage N3 sleep was greater (21% ± 7%) compared with BASE (18% ± 7%; p = 0.02). In addition, the number of arousals during rapid eye movement sleep were lower after HIIE (7 ± 5) compared with BASE (11 ± 7; p = 0.05). Wake after sleep onset was lower following MICE (41 min) compared with BASE (56 min; p = 0.02). Acylated ghrelin was lower and glucose was higher at 30 min after HIIE when compared with MICE (p ≤ 0.05). There were no significant differences between conditions in terms of total energy intake (p ≥ 0.05). HIIE appears to be more beneficial than MICE for improving sleep quality and inducing favourable transient changes in appetite-related hormones in overweight, inactive men. However, energy intake was not altered regardless of exercise intensity.


2014 ◽  
Vol 39 (7) ◽  
pp. 845-848 ◽  
Author(s):  
Lauren E. Skelly ◽  
Patricia C. Andrews ◽  
Jenna B. Gillen ◽  
Brian J. Martin ◽  
Michael E. Percival ◽  
...  

Subjects performed high-intensity interval training (HIIT) and continuous moderate-intensity training (END) to evaluate 24-h oxygen consumption. Oxygen consumption during HIIT was lower versus END; however, total oxygen consumption over 24 h was similar. These data demonstrate that HIIT and END induce similar 24-h energy expenditure, which may explain the comparable changes in body composition reported despite lower total training volume and time commitment.


2019 ◽  
Vol 51 (Supplement) ◽  
pp. 73
Author(s):  
Jeffrey S. Forsse ◽  
Matthew N. Peterson ◽  
Zacharias Papadakis ◽  
Nicholas Schwedock ◽  
Burritt W. Hess ◽  
...  

2017 ◽  
Vol 42 (9) ◽  
pp. 986-993 ◽  
Author(s):  
Laurel A. Littlefield ◽  
Zacharias Papadakis ◽  
Katie M. Rogers ◽  
José Moncada-Jiménez ◽  
J. Kyle Taylor ◽  
...  

Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg−1·min−1; body mass index, 31.8 ± 4.5 kg/m2) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%–50% oxygen uptake reserve (LI), high-intensity exercise at 70%–80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p < 0.05) with no differences between the exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.


2020 ◽  
Vol 15 (1) ◽  
pp. 126-132
Author(s):  
Richard Ebreo ◽  
Louis Passfield ◽  
James Hopker

Purpose: To evaluate the reliability of calculating gross efficiency (GE) conventionally and using a back extrapolation (BE) method during high-intensity exercise (HIE). Methods: A total of 12 trained participants completed 2 HIE bouts (P1 = 4 min at 80% maximal aerobic power [MAP]; P2 = 4 min at 100%MAP). GE was calculated conventionally in the last 3 minutes of submaximal (50%MAP) cycling bouts performed before and after HIE (Pre50%MAP and Post50%MAP). To calculate GE using BE (BGE), a linear regression of GE submaximal values post-HIE were back extrapolated to the end of the HIE bout. Results: BGE was significantly correlated with Post50%MAP GE in P1 (r = .63; P = .01) and in P2 (r = .85; P = .002). Reliability data for P1 and P2 BGE demonstrate a mean coefficient of variation of 7.8% and 9.8% with limits of agreement of 4.3% and 4.5% in relative GE units, respectively. P2 BGE was significantly lower than P2 Post50%MAP GE (18.1% [1.6%] vs 20.3% [1.7%]; P = .01). Using a declining GE from the BE method, there was a 44% greater anaerobic contribution compared with assuming a constant GE during 4-minute HIE at 100%MAP. Conclusion: HIE acutely reduced BGE at 100%MAP. A greater anaerobic contribution to exercise as well as excess postexercise oxygen consumption at 100%MAP may contribute to this decline in efficiency. The BE method may be a reliable and valid tool in both estimating GE during HIE and calculating aerobic and anaerobic contributions.


1994 ◽  
Vol 4 (4) ◽  
pp. 347-360 ◽  
Author(s):  
Cynthia A. Gillette ◽  
Richard C. Bullough ◽  
Christopher L. Melby

Postexercise energy metabolism was examined in male subjects age 22-35 years in response to three different treatments: a strenuous bout of resistive exercise (REx), a bout of stationary cycling (AEx) at 50% peak, and a control condition (C) of quiet sitting. Resting metabolic rate (RMR) was measured the morning of and the morning following each condition. Recovery oxygen consumption (RcO2) was measured for 5 hr following each treatment. Total 5-hrwas higher for the REx treatment relative to both AEx and C, with the largest treatment differences occurring early during recovery. There were no large treatment differences in postexercise respiratory exchange ratio values, except for the first hour of recovery following REx. RMR measured 14.5 hr postexercise for the REx condition was significantly elevated compared to C. These results suggest that strenuous resistive exercise results in a greater excess postexercise oxygen consumption compared to steady-state endurance exercise of similar estimated energy cost.


Sign in / Sign up

Export Citation Format

Share Document