Pore Structure Characteristics of RAP-Inclusive Cement Mortar and Cement Concrete Using Mercury Intrusion Porosimetry Technique

2019 ◽  
Vol 8 (3) ◽  
pp. 20180161 ◽  
Author(s):  
Sarah Mariam Abraham ◽  
G. D. R. N. Ransinchung
2013 ◽  
Vol 785-786 ◽  
pp. 248-252 ◽  
Author(s):  
Xiao Qing Yan ◽  
Ying Guang Fang ◽  
Hai Hong Mo ◽  
Ping Zhang

As a natural nanomaterial, the bentonite is widely used in industry and engineering, and it is used in the anti-seepage (infiltration) project in civil engineer because of its low permeability. The micro-pore structure characteristics of the bentonite with the different dehydration methods are measured by Mercury Intrusion Porosimetry (MIP) in this text. Then the effects of the dehydration methods on the micro-pore structure characteristics of bentonite are analysed and the detailed reasons of the test errors are given. The results of the research have certain referential value for the application of the bentonite in civil engineering and play a guiding role on how to reduce the errors and to improve the authenticity and the reliability of the test.


2016 ◽  
Vol 27 (4) ◽  
pp. 670-676 ◽  
Author(s):  
Na Zhang ◽  
Manchao He ◽  
Bo Zhang ◽  
Fengchao Qiao ◽  
Hailong Sheng ◽  
...  

2012 ◽  
Vol 517 ◽  
pp. 403-410
Author(s):  
Jia Xiao ◽  
Bao Guo Ma ◽  
Rong Zhen Dong ◽  
Cai Yun Xu

The effect of ground limestone fineness on the properties and mechanism of cement-based composite materials was investigated. The setting times, fluidity and strength of cement mortar were measured. In order to identify the mechanism effect of ground limestone fineness on the microstructure of the hardened cement pastes, microstructure analyses such as calorimetry analysis and Mercury Intrusion Porosimetry (MIP) were also performed. Experimental results indicated that the setting times are shortened, and the fluidity and strength of cement mortar are improved with the ground limestone fineness increases. The increase of the ground limestone fineness can effectively inhibit the pore structure of hardened paste, which due to mortar and paste samples incorporating replacement levels of ground limestone, and improve the pore structure of hardened paste.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1823
Author(s):  
Won-Kyung Kim ◽  
Young-Ho Kim ◽  
Gigwon Hong ◽  
Jong-Min Kim ◽  
Jung-Geun Han ◽  
...  

This study analyzed the effects of applying highly concentrated hydrogen nanobubble water (HNBW) on the workability, durability, watertightness, and microstructure of cement mixtures. The number of hydrogen nanobubbles was concentrated twofold to a more stable state using osmosis. The compressive strength of the cement mortar for each curing day was improved by about 3.7–15.79%, compared to the specimen that used general water, when two concentrations of HNBW were used as the mixing water. The results of mercury intrusion porosimetry and a scanning electron microscope analysis of the cement paste showed that the pore volume of the specimen decreased by about 4.38–10.26%, thereby improving the watertightness when high-concentration HNBW was used. The improvement in strength and watertightness is a result of the reduction of the microbubbles’ particle size, and the increase in the zeta potential and surface tension, which activated the hydration reaction of the cement and accelerated the pozzolanic reaction.


2019 ◽  
Vol 7 (2) ◽  
pp. T547-T563 ◽  
Author(s):  
Jiyuan Wang ◽  
Shaobin Guo

To systematically study the whole-aperture pore-structure characteristics of the marine-continental transitional shale facies in the Upper Palaeozoic Taiyuan and Shanxi Formations of the Qinshui Basin, we have collected a total of 11 samples for high-pressure mercury intrusion, low-pressure gas adsorption ([Formula: see text] and [Formula: see text]), nuclear magnetic resonance (NMR), and field-emission scanning electron microscopy with argon-ion polishing experiments to determine the pore morphology and distribution characteristics of shale samples in detail and to perform quantitative analyses. Then compared the pore-development characteristics of the Taiyuan Formation samples with those of the Shanxi Formation to determine which is preferable. The experimental results indicate that the shale samples of the Qinshui Basin mainly develop three types of pores: organic pores, intergranular pores, and microfractures. High-pressure mercury intrusion and gas-adsorption experiments indicate that the pore-size distributions exhibit multiple peaks. The samples contained varying proportions of macropores, mesopores, and micropores, among which the former two are dominant, accounting for approximately 85% of the total pore volume, whereas micropores account for only 15%. However, mesopores and micropores dominate the specific surface area; between them, the micropores are much more prevalent, accounting for more than 99% of the total specific surface area. Macropores contribute less than 1% of the specific surface area and therefore can be neglected. The pore morphology resembles the slit type parallel platy pores with a ballpoint pen structure. The NMR [Formula: see text] spectra have multiple-peak values. In addition, the large difference between the curved areas before and after centrifugation indicates that the samples contain a large proportion of mesopores and macropores, which is consistent with the results presented above. The results demonstrate that the development of pores in the Taiyuan Formation is better than that in the Shanxi Formation.


Sign in / Sign up

Export Citation Format

Share Document