Solder Joint Reliability of SnBi Finished TSOPs with Alloy 42 Lead-Frame under Temperature Cycling

2011 ◽  
pp. 74-74-15 ◽  
Author(s):  
Weiqiang Wang ◽  
Michael Osterman ◽  
Diganta Das ◽  
Michael Pecht
2010 ◽  
Vol 7 (8) ◽  
pp. 102939
Author(s):  
Weiqiang Wang ◽  
Michael Osterman ◽  
Diganta Das ◽  
Michael Pecht ◽  
S. W. Dean

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000542-000553
Author(s):  
Betty H. Yeung ◽  
Torsten Hauck ◽  
Brett Wilkerson ◽  
Thomas Koschmieder

The solder joint reliability of semiconductor package interconnects is critical to product durability. A dominant failure mode is solder fatigue due to the CTE mismatch between BGA component and PCB at thermal cycling. It is well known that besides thermal expansion mismatch of component and board, the solder joint geometry has a great impact on fatigue behavior and time to failure. In this study, a combination of Surface Evolver and finite element analysis are use to predict the solder joint shapes for the assembly of medium pin count BGA's and to estimate the reliability at accelerated temperature cycling conditions. Results of Surface Evolver are compared with the assumption of a truncated sphere. The solder shape predictions are applied for a subsequent thermo-mechanical analysis of the BGA assembly. Inelastic creep deformation is evaluated for critical solder balls, and the Coffin-Manson relation is used to estimate the solder joint lifetime. The entire simulation procedure will be demonstrated for a product design study for high reliability automotive BGA's. A fractional factorial design is defined that considers solder sphere diameter and solder pad sizes on BGA substrate and on PCB side. Resulting creep values and lifetime estimates will be compared.


2000 ◽  
Vol 29 (10) ◽  
pp. 1233-1240 ◽  
Author(s):  
Seung Wook Yoon ◽  
Chang Jun Park ◽  
Sung Hak Hong ◽  
Jong Tae Moon ◽  
Ik Seong Park ◽  
...  

2007 ◽  
Vol 353-358 ◽  
pp. 2932-2935
Author(s):  
Yong Cheng Lin ◽  
Xu Chen ◽  
Xing Shen Liu ◽  
Guo Quan Lu

The reliability of solder joints in flip chip assemblies with both compliant (flex) and rigid (PCB) substrates was studied by accelerated temperature cycling tests and finite element modeling (FEM). In-process electrical resistance measurements and nondestructive evaluations were conducted to monitor solder joint failure behavior, hence the fatigue failure life. Meanwhile, the predicted fatigue failure life of solder joints was obtained by Darveaux’s crack initiation and growth models. It can be concluded that the solder joints in flip chip on flex assembly (FCOF) have longer fatigue life than those in flip chip on rigid board assembly (FCOB); the maximum von Mises stress/strain and the maximum shear stress/strain of FCOB solder joints are much higher than those of FCOF solder joints; the thermal strain and stress in solder joints is reduced by flex buckling or bending and flex substrate could dissipate energy that otherwise would be absorbed by solder joint. Therefore, the substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during temperature cycling.


Sign in / Sign up

Export Citation Format

Share Document