A Comparative Study of the Solder Joint Reliability in Flip Chip Assemblies with Compliant and Rigid Substrates

2007 ◽  
Vol 353-358 ◽  
pp. 2932-2935
Author(s):  
Yong Cheng Lin ◽  
Xu Chen ◽  
Xing Shen Liu ◽  
Guo Quan Lu

The reliability of solder joints in flip chip assemblies with both compliant (flex) and rigid (PCB) substrates was studied by accelerated temperature cycling tests and finite element modeling (FEM). In-process electrical resistance measurements and nondestructive evaluations were conducted to monitor solder joint failure behavior, hence the fatigue failure life. Meanwhile, the predicted fatigue failure life of solder joints was obtained by Darveaux’s crack initiation and growth models. It can be concluded that the solder joints in flip chip on flex assembly (FCOF) have longer fatigue life than those in flip chip on rigid board assembly (FCOB); the maximum von Mises stress/strain and the maximum shear stress/strain of FCOB solder joints are much higher than those of FCOF solder joints; the thermal strain and stress in solder joints is reduced by flex buckling or bending and flex substrate could dissipate energy that otherwise would be absorbed by solder joint. Therefore, the substrate flexibility has a great effect on solder joint reliability and the reliability improvement was attributed to flex buckling or bending during temperature cycling.

Author(s):  
Guo-Quan Lu ◽  
Xingsheng Liu ◽  
Sihua Wen ◽  
Jesus Noel Calata ◽  
John G. Bai

There has been a significant research effort on area-array flip-chip solder joint technology in order to reduce package footprint, enhance current handling capability, and improve heat dissipation. However, there is a lingering concern over cyclic fatigue of solder alloys by thermo-mechanical stresses arising from mismatched thermal expansion coefficients of expansion among the various components of the package. In this paper, some strategies taken to improve the reliability of solder joints on power devices in single-device and multi-chip packages are presented. A strategy for improving solder joint reliability by adjusting solder joint geometry, underfilling and utilization of flexible substrates is discussed with emphasis on triple-stacked solder joints that resemble the shape of an hourglass. The hourglass shape relocates the highest inelastic strain away from the weaker interface with the chip to the bulk region of the joint while the underfill provides a load transfer from the joints. Flexible substrates can deform to relieve thermo-mechanical stresses. Thermal cycling data show significant improvements in reliability when these techniques are used. The design, testing, and finite-element analyses of an interconnection structure, termed the Dimple-Array Interconnect (DAI), for improving the solder joint reliability is also presented. In the DAI structure, a solder is used to join arrays of dimples pre-formed on a metal sheet onto the bonding pads of a device. Finite-element thermo-mechanical analyses and thermal cycling data show that the dimple-array solder joints are more fatigue-resistant than the conventional barrel-shaped solder joints in flip-chip IC packages.


2014 ◽  
Vol 54 (5) ◽  
pp. 939-944 ◽  
Author(s):  
Ye Tian ◽  
Xi Liu ◽  
Justin Chow ◽  
Yi Ping Wu ◽  
Suresh K. Sitaraman

2006 ◽  
Vol 504 (1-2) ◽  
pp. 426-430 ◽  
Author(s):  
Dae-Gon Kim ◽  
Jong-Woong Kim ◽  
Seung-Boo Jung

2011 ◽  
pp. 74-74-15 ◽  
Author(s):  
Weiqiang Wang ◽  
Michael Osterman ◽  
Diganta Das ◽  
Michael Pecht

Author(s):  
Frank Z. Liang ◽  
Rick L. Williams

As electronic package input/output density increases and cost constraints drive the package size smaller, the one area where a designer can not compromise is solder joint reliability. Maintaining flip chip ball grid array (FCBGA) solder joint reliability (SJR) has been at the top of the designer’s critical list with decreasing package size. The FCBGA footprint will need to be modified for a variety of reasons to meet routing optimization, power delivery, electrical performance to name a few. The designer must deal with several competing proposals (electrical performance, cost and use conditions) trying to optimize the FCBGA footprint while being aware that some modifications can negatively affect SJR. This paper investigates solder ball layouts and their effect on SJR through both finite element (FE) models and empirical tests. In addition, consideration of next generation layout is presented to optimize routability while preserving SJR. When feasible, empirical tests were run to validate predictive models.


2010 ◽  
Vol 7 (8) ◽  
pp. 102939
Author(s):  
Weiqiang Wang ◽  
Michael Osterman ◽  
Diganta Das ◽  
Michael Pecht ◽  
S. W. Dean

Sign in / Sign up

Export Citation Format

Share Document