scholarly journals The proximate composition of three marine pelagic fish: blue whiting ( Micromesistius poutassou ), boarfish ( Capros aper ) and Atlantic herring ( Clupea harengus )

Author(s):  
R.P. Ross ◽  
C. Stanton ◽  
J. Whooley ◽  
S. Culloty ◽  
D. Mannion ◽  
...  

This study presents data from an in-depth proximate compositional analysis of three marine fish species: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus). These fish contained significant amounts of protein (16–17%), lipids (4–11%) and minerals (2–6% ash). The proteins, particularly from boarfish, had close to optimum amino acid profiles for human and fish nutrition. They compared favourably with other fish species in terms of total lipids and relative concentration of the omega-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid (11.8–13.3% and 5.9–8.1% in triacylglycerols [TG] and 24.6–35.4% and 5.8–12.0% in phospholipids [PL]). Atlantic herring had the highest lipid content among the three fish and was found to contain high levels of PL poly-unsaturated fatty acids, including omega-3 fatty acids. Minerals detected in the fish included calcium (272–1,520 mg/100 g), phosphorus (363–789 mg/100 g), iron (1.07–2.83 mg/100 g), magnesium (40.70–62.10 mg/100 g), potassium (112.00–267.00 mg/100 g), selenium (0.04–0.06 mg/100 g), sodium (218.00–282.00 mg/100 g) and zinc (1.29–5.57 mg/100 g). Boarfish had the highest ash fraction and also the highest levels of all the minerals, except potassium. Atlantic herring had considerably lower mineral content compared with the other two species and, levels detected were also lower than those reported in previously published studies. Heavy metals contents were quantified, and levels were significantly below the maximum allowable limits for all elements except arsenic, which ranged from 1.34 to 2.44 mg/kg in the three fish species. Data outlined here will be useful for guiding product development. Future studies would benefit from considering catch season, sex and developmental stage of the fish.

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


Author(s):  
Jean-Yves LE GUENNEC ◽  
Forel Céline ◽  
Messager Laureen ◽  
Sierra Camille ◽  
Contreras Ivette ◽  
...  

Up to the middle of the 2000’s, omega 3 polyunsaturated fatty acids were considered has having cardioprotective properties. Patients having a myocardial infarction were supplemented with these fatty acids in secondary prevention of myocardial infarction. Since then, many randomized clinical trials failed to observe the cardioprotective effects previously described. The main hypothesis to explain such change is the systematic prescription of statins to patients following a myocardial infarction, statins interfering with the homeostasis of omega 3 fatty acids. This review discusses the effects of different forms of omega-3 in association with statins on cardiovascular disease and emphasize on the interaction between statins and omega 3 fatty acids leading to the possible need to use higher dose of fatty acids to get a synergistic effect.


2009 ◽  
Vol 2009 ◽  
pp. 112-112
Author(s):  
E Magowan ◽  
A Fearon ◽  
M E E McCann ◽  
A Beattie

The fatty acid profile of pork can be easily manipulated via the diet of the pig. The most common aim is to increase the proportion of unsaturated fatty acids, in particular omega 3 fatty acids. Kim et al. (2008) reported that the breed of pig can have an effect on the fatty acid composition of pork. The aim of the current experiment was to investigate the effect of terminal sires of different breed commonly used in Northern Ireland on the fatty acid profile of pork.


2021 ◽  
Vol 854 (1) ◽  
pp. 012081
Author(s):  
Dragan Sefer ◽  
Stamen Radulovic ◽  
Dejan Peric ◽  
Matija Sefer ◽  
Lazar Makivic ◽  
...  

Abstract Literature data show that the relationship between two groups of polyunsaturated fatty acids in diet, omega 3 acids, whose basic representative is a-linolenic acid (C18: 3 n-3), and omega 6 acids, whose basic representative is linoleic acid (C18: 2 n-6), has a significant role in development of cardiovascular diseases in humans. The optimal ratio of omega 6 to omega 3 fatty acids is around 4:1. In monogastric animals, the fatty acids in feed are absorbed in the gastrointestinal tract largely unchanged. This means the fatty acid profile of the animal’s diet directly reflects the fatty acid profile of the tissue. The daily intake of unsaturated fatty acids can be increased by an adequate animal nutrition strategy. Flaxseed contains ten times more unsaturated (32.26%) than saturated (3.66%) fatty acids. The largest amount of unsaturated fatty acids (about 70%) is a-linolenic acid (ALA), which is a precursor of the entire omega 3 series of fatty acids, and which makes flaxseed an ideal raw material for the production of a wide range of omega 3 enriched products. In order to obtain chicken meat rich in omega 3, an experiment was organized with a specific diet for broilers at fattening. Thanks to the designed animal feed, it was possible to get products (meat, breast, drumstick, liver, subcutaneous fat) with significantly higher amounts of omega 3 fatty acids compared to the same products obtained from broilers fed with conventional mixtures, or with almost the ideal ratio between omega 6 and omega 3 fatty acids.


Author(s):  
Arif Rahman Hakim

Docosahexanoic acid (DHA) is commercially obtained from marine fish. With an increasinghuman population, the supplies of DHA are still not sufficient to meet the world’s need of DHA asfood supplement. The objective of this review is to discuss Schizochytrium sp., one of microalgaewhich is rich in DHA, as one of the best candidate as producer of sustainable and affordable DHA.Heterotrophic microalgae, especially genus Schizochytrium, produces omega-3 fatty acids up to40% of total unsaturated fatty acids.  Cultivation of the microalgae is easy as it does not requiresunlight as source of energy. Previous publication reported that several local strains ofSchizochytrium have been isolated from mangrove area in Indonesia. We expect that thosestrains can be cultivated in mass production as producer of DHA.


2021 ◽  
Vol 50 (8) ◽  
pp. 2271-2282
Author(s):  
Wawan Kosasih ◽  
Tina Rosmalina R. ◽  
Chandra Risdian ◽  
Endang Saepudin ◽  
Sri Priatni Sri Priatni

Production of omega-3 fatty acids from lemuru fish by-products was studied by enzymatic hydrolysis using a lipase enzyme in one liter of the batch reactor. The hydrolysis temperature of fish oil was set at 45 to 55 ℃ for 0 to 24 h, whereas agitation from 50 to 150 rpm. RSM-Box Bhenken was used to study the effect of these parameters on omega-3 (EPA, docosahexaenoic acid (DHA), and α-linolenic acid (ALA)) content. The % free fatty acid (FFA), acid index, peroxide index, iodine index, and saponification index of lemuru fish oil was 0.925, 2.52, 42.5, 97.28, and 160.11%, respectively. GC-MS analysis results showed that unsaturated fatty acids content (62.34%), which are consisted of omega-3 (EPA, DHA, and ALA), omega-6 and omega-9, was much higher than saturated acids (12.97%). The experiment data showed that the highest EPA (1.221%) and DHA (0.312%) content were reached at 50 ℃ and 24 h with 150 rpm of agitation. However, through the RSM-Box Bhenken analysis and 3D surface plot, it was suggested that the optimum condition was obtained at 45 ℃ and 24 h with 150 rpm of agitation with the content of EPA, DHA, and ALA were 1.709, 0.49, and 1.237%, respectively.


2021 ◽  
Vol 59 (1) ◽  
Author(s):  
Janna Cropotova ◽  
Revilija Mozuraityte ◽  
Inger Beate Standal ◽  
Olga Szulecka ◽  
Tomasz Kulikowski ◽  
...  

Research background. It is desirable to increase the consumption of pelagic fish rich in long-chain omega-3 fatty acids. Partial replacement of traditionally used white fish species by pelagic fish will increase the content of omega-3 fatty acids, and thus improve the nutritional value but it may also affect the consumer acceptance. The aim of this study is to assess the physicochemical and sensory quality of novel fish cake prototypes prepared from haddock and mackerel mince. Experimental approach. Fillets of haddock and Atlantic mackerel were used as raw material for preparation of fish cakes. The fish fillets were minced, mixed together (in haddock/mackerel mass ratio of 100:0, 75:25 and 50:50) with salt, potato starch, pepper and full fat milk. Physicochemical and sensory analyses were further performed. Results and conclusions. The fatty acid composition analysis showed that the recommended daily intake of 250 mg of eicosapentaenoic acid and docosahexaenoic acid can easily be reached by consumption of fish cakes enriched with mackerel. The oxidation levels of all fish cakes were low in terms of peroxide value and thiobarbituric acid reactive substance assay (TBARS). Fish cakes prepared with higher mass fraction of mackerel mince (>50 %) had significantly (p<0.05) softer texture than other fish cakes due to higher amount of fat in their formulations. At the same time, these fish cakes were significantly darker than haddock-based (>50 %) fish cakes due to higher myoglobin content in the fish muscle. Moreover, fish cakes with higher amount of mackerel mince had increased yellowness due to the accumulation of water-soluble (r=0.990, p<0.05) and fat-soluble (r=0.976, p<0.05) TBARS. Metabolites relevant for taste and quality were quantified by using 1H nuclear magnetic resonance (NMR) spectroscopy. The mass fractions of anserine, trimethylamine oxide and β-alanine decreased, while the mass fractions of histidine, glutamic acid and alanine increased with the addition of mackerel. Sensory tests have shown the addition of mackerel did not reduce consumer acceptability of the new fish cakes. Novelty and scientific contribution. The research demonstrates that Atlantic mackerel can be successfully used for partial replacement of white fish species in fish cake formulations to produce healthy and tasty ready-to-cook products and increase the consumption of small pelagic fish in Europe.


Author(s):  
Maruba Pandiangan ◽  
Jamaran Kaban ◽  
Basuki Wirjosentono ◽  
Jansen Silalahi

Omega 3 and 6 fatty acids are very good consumed to improve human health. For this reason, research is needed to determine the glyceride profile and identification of omega 3 and 6 fatty acids in fat molecules so that the potential of catfish oil as a source of omega 3 and 6 can be known. Catfish oil was extracted by the soxletation method. Fatty acid composition was analyzed by gas chromatography (GC-FID) which was previously esterified using BF3. The results showed that the composition of unsaturated fatty acids more than saturated fatty acids. Omega-3 fatty acids are found consisting of linolenic acid, eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) and omega 6, namely linoleic acid. The comparison of omega 3 and omega 6 in catfish oil is still within the recommended comparison terms. Judging from the composition and position of catfish oil fatty acids which contain omega 3 and omega 6 fatty acids. Thus catfish oil has the potential as a source of omega 3 and 6 from one of the freshwater fish that are consumed by many people.


Sign in / Sign up

Export Citation Format

Share Document