scholarly journals SARS-CoV-2 Lambda Variant: Spatiotemporal Distribution and Potential Public Health Impact

Zoonoses ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Cao Chen ◽  
Qi Shi ◽  
Xiao-Ping Dong

Various SARS-CoV-2 variants have continually emerged since the summer of 2020. Recently, the spread and potential effects of the Lambda variant on public health have caused great scientific and public concern. The Lambda variant (C.37), first identified in Peru in December 2020, contains a novel deletion (Δ246–252) and two novel mutations, L452Q and F490S, not present in the ancestral strain and other variants. The Lambda variant was designated a variant of interest in April of 2021. By the end of July, this variant sequence was detected in more than 30 countries worldwide, mostly in South America. This study analyzed the global spatiotemporal distribution of the Lambda variant from the beginning of January to the end of July from publicly available data. The Lambda variant spread rapidly in Peru and became predominant in March. Circulation of the Lambda variant has also been observed in some neighboring countries, i.e., Argentina, Chile and Ecuador, where it has remained at remarkably low levels. The circulation of the Lambda variant in other countries in South America (e.g., Brazil and Colombia) and other regions of the world has also occurred at very low levels, even though this variant has been known for a long time. Multivariate linear regression analyses of the proportion of case fatalities attributable to the Lambda variant, the new deaths and the new confirmed cases per million (7-day rolling average) in Peru did not show significant associations. A review of the most recent data on the Lambda variant has suggested this variant’s relatively high infectivity in cultured cells and low neutralizing titers of convalescent sera and vaccine-elicited antibodies in vitro. However, the exact effects of this variant on clinical severity and vaccine effectiveness remain poorly documented. The currently authorized COVID-19 vaccines are still believed to provide efficient protection against the Lambda variant.

1996 ◽  
Vol 16 (1) ◽  
pp. 414-421 ◽  
Author(s):  
X Nan ◽  
P Tate ◽  
E Li ◽  
A Bird

MeCP2 is a chromosomal protein that is concentrated in the centromeric heterochromatin of mouse cells. In vitro, the protein binds preferentially to DNA containing a single symmetrically methylated CpG. To find out whether the heterochromatic localization of MeCP2 depended on DNA methylation, we transiently expressed MeCP2-LacZ fusion proteins in cultured cells. Intact protein was targeted to heterochromatin in wild-type cells but was inefficiently localized in mutant cells with low levels of genomic DNA methylation. Deletions within MeCP2 showed that localization to heterochromatin required the 85-amino-acid methyl-CpG binding domain but not the remainder of the protein. Thus MeCP2 is a methyl-CpG-binding protein in vivo and is likely to be a major mediator of downstream consequences of DNA methylation.


Parasitology ◽  
2006 ◽  
Vol 133 (S2) ◽  
pp. S43-S61 ◽  
Author(s):  
D. P. McMANUS ◽  
J. P. DALTON

Schistosoma japonicum,Fasciola hepaticaandF. giganticaare digenetic trematodes and, therefore, possess similar life cycles. While schistosomiasis japonica has for a long time been recognised as a major disease of both humans and animals, infection with fasciolids has only been considered of relevance to animals. However, a number of recent reports indicate that fasciolosis is becoming a serious public health problem, especially in South America, Egypt and Iran (sporadic cases are also on the increase throughout Europe). Vaccines targeted at animals could play an important role in controlling these three diseases in animals and, by blocking transmission of infection, have a concurrent beneficial effect on disease in humans. Approaches towards identifying and producing vaccines against these parasites are similar and are discussed in this reveiw.


Zoonoses ◽  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Qi Shi ◽  
Xiao-Ping Dong

The COVID-19 pandemic has already affected human society for more than 1.5 years. As of August 8, 2021, this pandemic had caused more than 203 million infected and 4.3 million deaths worldwide. As an RNA virus, SARS-CoV-2 is prone to genetic evolution, thus resulting in development of mutations over time. Numerous variants of SARS-CoV-2 have been described globally, four of which are considered variants of concern (VOCs) by the WHO: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1) and Delta (B.1.617.2). The Delta VOC was first reported in India in December of 2020 and has since affected approximately 130 different countries and regions. Herein, the spatiotemporal spread of the Delta VOC during April to July 2021 in 20 selected countries with available data were analyzed. The prevalence of the Delta VOC sequences was maintained at low levels in the beginning of April, increased rapidly in the following 3 months and is now becoming the predominant viral strain in most regions of the world. We also discuss the effects of the Delta VOC on transmissibility, clinical severity and vaccine effectiveness according to the latest data. The Delta VOC has greater transmissibility and risk of hospitalization than the ancestral SARS-CoV-2 strains and the other three VOCs. The Delta VOC places partially or unvaccinated sub-populations at high risk. Currently authorized vaccines, regardless of vaccine type, still have reliable effectiveness against symptomatic infections and hospitalizations due to the Delta VOC.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


Sign in / Sign up

Export Citation Format

Share Document