scholarly journals Experimental study of a compact cooling system with heat pipes for powerful LED matrices

Author(s):  
D. V. Pekur ◽  
V. M. Sorokin ◽  
Yu. E. Nikolaenko

LED light sources, and powerful multichip light sources in particular, are currently widely used for lighting household and industrial premises. With an increase in power, the amount of heat increases as well, which leads to an increase in the temperature of semiconductor crystals and, accordingly, to a decrease in the reliability of LEDs and a change in their photometric characteristics. Therefore, when developing the design of LED lighting devices, special attention is paid to thermal management. Since the early 2000s, heat pipes have been widely used to efficiently remove heat from powerful electronic components. They do not require power for moving the working fluid and are most suitable for use in LED luminaires. In this study, the authors carry out a computer simulation of a cooling system based on heat pipes, which is then used to design and test a powerful compact LED lamp with a thermal load of up to 100 W. Heat pipes with a length of 150 mm are used to remove heat from the LED light source to the heat exchanger rings located concentrically around it. The heat exchanger rings are cooled by natural convection of the ambient air. The results of computer modeling of the temperature field of the developed cooling system show that at a power of the LED light source of 140.7 W, the temperature of the LED matrix case is 60.5°C, and the experimentally measured temperature is 61.3°C. The experimentally determined thermal power of the LED matrix is 91.5 W. The p–n junction temperature is 79.6°C. The total thermal resistance of the cooling system is 0.453°C/W. The obtained results indicate the effectiveness of the developed design.

Author(s):  
D. V. Pekur ◽  
Yu. E. Nikolaenko ◽  
V. M. Sorokin

The problem of climate change poses a challenge for humanity: it is necessary to reduce harmful emissions into the atmosphere, caused mainly by the burning of coal in thermal power plants. Partially, this problem can be solved by the use of energy-saving devices and equipment, including the replacement of traditional light sources with more efficient LEDs. This, however, causes the problem of ensuring normal thermal modes of the LEDs, since the more powerfull the LED is, the more heat is released in their semiconductor crystals, which leads to an increase in the temperature of the crystals and a decrease in the reliability of the device. This problem becomes especially urgent when using powerful multi-chip LED light sources, the so-called SOB matrices, whose power even now exceeds 500 W. This article presents a new design of a powerful LED lamp for indoor illumination of rooms with low ceilings. The heat from the LED is transferred via heat pipes to the heat exchanger rings looped around the light source. The heat exchanger rings are cooled by the natural convection of the surrounding air (at an ambient air temperature of 20°C). Computer simulation allowed evaluating the ability of the proposed cooling system to provide a normal thermal mode of the LED light source. The results on the computer simulations of the temperature field of light source`s cooling system showed that when the LED power is 300 W, the temperature of the light source`s base at the point where it is connected to the light source does not exceed 67.6°C. When the contact zone is covered with a 0.1 mm layer of heat-conducting paste (Arctiс Silver 5 type) with a thermal conductivity coefficient of 8.7 W/(m•°C), the temperature of the LED case reaches 70°C. If the thermal resistance of the LED light source is 0.1°C/W, then the temperature of its semiconductor crystals will be 100°C, well below the allowable temperature value of 150°C. The total thermal resistance of the cooling system is 0.159°C/W.


2020 ◽  
Vol 23 (04) ◽  
pp. 415-423
Author(s):  
D.V. Pekur ◽  
◽  
V.M. Sorokin ◽  
Yu.E. Nikolaenko ◽  
V.P. Kostylyov ◽  
...  

Widespread use of energy-saving LED lighting systems powered by renewable energy sources, solar energy in particular, will contribute to the improvement of global ecology. One of the structural elements of such lighting systems is LED luminaire. The authors of this article perform a first ever experimental study of electro-optical characteristics of the basic version of a compact high-power LED luminaire for indoor use. The particular feature of this lighting device is that its cooling system for the LED light source is based on heat pipes and concentric cooling rings. Such design allows ensuring the required cooling efficiency of the LED matrix. The revealed trends in optical and electrical parameters during temperature stabilization indicate that the proposed cooling system is highly efficient in maintaining normal thermal conditions of LED light sources with a power of up to 140.7 W and a luminous flux of up to 15083 lm. The results on determining spatial distribution of luminous flux of these luminaires indicate that they may be used for lighting large rooms with high ceilings. Scaling the basic modular design version of the cooling system allows increasing the power of the LED light source up to 600 W.


2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


2017 ◽  
Vol 19 (2) ◽  
pp. 376-379 ◽  
Author(s):  
M. Rauch ◽  
S. Schmidt ◽  
I. W. C. E. Arends ◽  
K. Oppelt ◽  
S. Kara ◽  
...  

The photocatalytic oxidation of NADH using a flavin photocatalyst and a simple blue LED light source is reported.


2020 ◽  
pp. 1-34
Author(s):  
Matthew Carlson ◽  
Francisco Alvarez

Abstract A new generation of Concentrating Solar Power (CSP) technologies is under development to provide dispatchable renewable power generation and reduce the levelized cost of electricity (LCOE) to 6 cents/kWh by leveraging heat transfer fluids (HTF) capable of operation at higher temperatures and coupling with higher efficiency power conversion cycles. The U.S. Department of Energy (DOE) has funded three pathways for Generation 3 CSP (Gen3CSP) technology development to leverage solid, liquid, and gaseous HTFs to transfer heat to a supercritical carbon dioxide (sCO2) Brayton cycle. This paper presents the design and off-design capabilities of a 1 MWth sCO2 test system that can provide sCO2 coolant to the primary heat exchangers (PHX) coupling the high-temperature HTFs to the sCO2 working fluid of the power cycle. This system will demonstrate design, performance, lifetime, and operability at a scale relevant to commercial CSP. A dense-phase high pressure canned motor pump is used to supply up to 5.3 kg/s of sCO2 flow to the primary heat exchanger at pressures up to 250 bar and temperatures up to 715 °C with ambient air as the ultimate heat sink. Key component requirements for this system are presented in this paper.


2014 ◽  
Vol 1082 ◽  
pp. 309-314 ◽  
Author(s):  
Diogo L.F. Santos ◽  
Larissa S. Marquardt ◽  
Paulo H.D. Santos ◽  
Thiago Antonini Alves

This work presents a theoretical and experimental analysis of a heat exchanger assisted by five heat pipes made of copper with a metallic mesh 100 of stainless steel which was used as capillary structure. All heat pipes used water as the working fluid and were designed based on the capillary limit model. The heat pipes were developed and tested under heat loads varying from 20 to 50 W before application into the heat exchanger. The theoretical and experimental results were compared and all heat pipes worked satisfactorily. Thereafter, it is presented the development of heat pipe heat exchanger which was tested under heat loads varying from 100 to 250 W. The highest temperature measured on the external surface of the heat pipes was 90 oC and the heat exchanger thermal efficiency varied from 74 to 80%. It is showed that the use of a stainless steel mesh as a porous wick was proved to work successfully in heat pipes.


Author(s):  
Mayumi Ouchi ◽  
Yoshiyuki Abe ◽  
Masato Fukagaya ◽  
Takashi Kitagawa ◽  
Haruhiko Ohta ◽  
...  

Energy consumption in data centers has seen a drastic increase in recent years. In data centers, server racks are cooled down in an indirect way by air-conditioning systems installed to cool the entire server room. This air cooling method is inefficient as information technology (IT) equipment is insufficiently cooled down, whereas the room is overcooled. The development of countermeasures for heat generated by IT equipment is one of the urgent tasks to be accomplished. We, therefore, proposed new liquid cooling systems in which IT equipment is cooled down directly and exhaust heat is not radiated into the server room. Three cooling methods have been developed simultaneously. Two of them involve direct cooling; a cooling jacket is directly attached to the heat source (or CPU in this case) and a single-phase heat exchanger or a two-phase heat exchanger is used as the cooling jacket. The other method involves indirect cooling; heat generated by CPU is transported to the outside of the chassis through flat heat pipes and the condensation sections of the heat pipes are cooled down by coolant with liquid manifold. Verification tests have been conducted by using commercial server racks to which these cooling methods are applied while investigating five R&D components that constitute our liquid cooling systems: the single-phase heat exchanger, the two-phase heat exchanger, high performance flat heat pipes, nanofluid technology, and the plug-in connector. As a result, a 44–53% reduction in energy consumption of cooling facilities with the single-phase cooling system and a 42–50% reduction with the flat heat pipe cooling system were realized compared with conventional air cooling system.


1979 ◽  
Vol 101 (4) ◽  
pp. 516-523 ◽  
Author(s):  
James C. Eastwood

The efficiency of turbocharged diesel engines can be increased by cooling the charge air. This paper presents a design approach for liquid-coupled indirect-transfer heat exchanger systems to perform the air-cooling function. The two advantages most commonly cited for this approach to charge-air cooling are (1) the heat exchangers involved are easily packaged so that their shapes can be controlled by judicious design, and (2) simple gas ducting allows for compact machinery arrangements and relatively low charge-air pressure drop. An analytical approach to the design of liquid-coupled indirect-transfer heat exchanger systems is presented. Performance curves are constructed on the basis of this analysis. Four important design conditions are evident from the observation of these performance curves including (1) the relative capacity rate combination of the three fluids (ambient air, coupling liquid, and engine charge-air) which yields the highest overall effectiveness, (2) an optimum coupling-liquid flow rate, (3) the relative effectiveness distribution for each of the two component heat exchangers (hot and cold components), and (4) a broad design range for the optimum area distribution between the hot and cold exchangers. These performance curves serve as a guide for the design of a liquid-coupled charge-air cooling system.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5317
Author(s):  
Grzegorz Górecki ◽  
Marcin Łęcki ◽  
Artur Norbert Gutkowski ◽  
Dariusz Andrzejewski ◽  
Bartosz Warwas ◽  
...  

The present study is devoted to the modeling, design, and experimental study of a heat pipe heat exchanger utilized as a recuperator in small air conditioning systems (airflow ≈ 300–500 m3/h), comprised of individually finned heat pipes. A thermal heat pipe heat exchanger model was developed, based on available correlations. Based on the previous experimental works of authors, refrigerant R404A was recognized as the best working fluid with a 20% heat pipe filling ratio. An engineering analysis of parametric calculations performed with the aid of the computational model concluded 20 rows of finned heat pipes in the staggered arrangement as a guarantee of stable heat exchanger effectiveness ≈ 60%. The optimization of the overall cost function by the “brute-force” method has backed up the choice of the best heat exchanger parameters. The 0.05 m traversal (finned pipes in contact with each other) and 0.062 m longitudinal distance were optimized to maximize effectiveness (up to 66%) and minimize pressure drop (less than 150 Pa). The designed heat exchanger was constructed and tested on the experimental rig. The experimental data yielded a good level of agreement with the model—relative difference within 10%.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012056
Author(s):  
Pawaphat Jaturaphagorn ◽  
Papichaya Chaisakul ◽  
Nattaporn Chattham ◽  
Pichet Limsuwan

Abstract Research on mid-IR silicon-based waveguides has recently received strong interest. Particularly, this paper focuses on one of the critical issues in micron-scale photonic integrated circuits, which is to efficiently couple a mid-IR LED (light emitting diode) light source to an external micron-scale waveguide. The optical coupling scheme is crucial for the exploitation of LED light sources in waveguide-based spectroscopic sensing applications. This paper reports optical coupling scheme between an LED mid-IR light source and a silicon rich silicon nitride (SiN) waveguide that could enable the use of LED-based light sources. Finally, the detection limit of the investigated device for carbon dioxide gas detection is calculated.


Sign in / Sign up

Export Citation Format

Share Document