scholarly journals Performance Evaluation Framework under the Influence of Industry 4.0: The Case of the Czech Manufacturing Industry

2021 ◽  
Vol 24 (1) ◽  
pp. 118-134
Author(s):  
Martina Hedvičáková ◽  
Martin Král

The current economic situation creates general pressure to increase performance. Any inefficient use of production factors will lead to problems and long-term economic unsustainability in many industries. The effects of the Covid-19 pandemic will also have a negative impact on all sectors of the economy and the faster onset of the fourth industrial revolution. The article, therefore, proposes a new framework for the performance evaluation of the manufacturing industry, which is based on the composite performance indicator. This indicator is obtained by a cross-sectoral comparison of all sub-key performance indicators. Using cluster analysis and analysis of variance, a total of 6 indicators to evaluate performance in the manufacturing industry were selected as statistically significant. The added value of the whole concept is its direct independence on the economic situation, which eliminates short-term economic oscillations that would be reflected in classical methods of performance evaluation otherwise. The results show that some industries are more efficient in the long run due to their effective investments in the capital, which replaces the labour factor and creates room for the realization of relatively higher profits. By contrast, some sectors, despite high investments, do not achieve the desired level of performance – these investments are not efficient or they are complementary to the labour factor, thus denying the principles of Industry 4.0. It thus creates preconditions for increasing dependence on external factors and, at the same time, makes the given sectors in a freely competitive environment economically unsustainable in the long run.

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 628
Author(s):  
Michail J. Beliatis ◽  
Kasper Jensen ◽  
Lars Ellegaard ◽  
Annabeth Aagaard ◽  
Mirko Presser

This paper investigates digital traceability technologies taking careful consideration of the company’s needs to improve the traceability of products at the production of GPV Group as well as the efficiency and added value in their production cycles. GPV is primarily an electronics manufacturing service company (EMS) that manufactures electronic circuit boards, in addition to big metal products at their mechanics manufacturing sites. The company aims to embrace the next generation IoT technologies such as digital traceability in their internal supply chain at manufacturing sites in order to stay compatible with the Industry 4.0 requirements. In this paper, the capabilities of suitable digital traceability technologies are screened together with the actual GPV needs to determine if deployment of such technologies would benefit GPV shop floor operations and can solve the issues they face due to a lack of traceability. The traceability term refers to tracking the geolocation of products throughout the manufacturing steps and how that functionality can foster further optimization of the manufacturing processes. The paper focuses on comparing different IoT technologies and analyze their positive and negative attributes to identify a suitable technological solution for product traceability in the metal manufacturing industry. Finally, the paper proposes a suitable implementation road map for GPV, which can also be adopted from other metal manufacturing industries to deploy Industry 4.0 traceability at shop floor level.


2018 ◽  
Vol 6 (3) ◽  
pp. 1-8
Author(s):  
Fatmir Azemi ◽  
Edmond Hajrizi ◽  
Bekim Maloku

In this paper the concept of Maturity Level of Kosovo Industry will be presented according to the Industry 4.0. Digitalization of factory has impact the entire business environment and lead to Smart Enterprises. To create a model of Smart Factory, first we have analyzed the existing situation of Kosovo Manufacturing Industry with regard to revolution of Industry. In this paper we will describe the results of a recent research at the Kosovo manufacturing companies and are included metalworking and furniture industry, where is developed a Maturity Level for Kosovo Industry. To describe the Maturity Level of Kosovo Industry we have delivered questionnaire and have been done interviews with CEOs (Chief Executive Officer). The average score of Industrial Maturity Level for Kosovo Industry is 2.14 which represent 2nd Industrial Revolution, but some of enterprises belong to 3rd Industrial Revolution. Also, the main barriers of this low level of Maturity Level of Kosovo Industry are highlights based on questionnaire and interviews with CEOs, such as: lack of training programs, language barriers, high cost of purchasing/maintenance of technology, unskilled workers, and est.


2020 ◽  
Vol 26 (9) ◽  
pp. 84-92
Author(s):  
Lo Thi Hong Van ◽  
◽  
L. Guzikova ◽  

The purpose of the study is to identify the challenges, prospects and ways for the development of the manufacturing industry in Vietnam in the context of Industry 4.0, after COVID-19. The article examines the development of the manufacturing industry in the context of Industry 4.0. The research methodology includes comparative analysis, elements of positive and normative analysis. The study is based on statistical information available within the period of writing the article (till October 1, 2020). The data of Vietnamese and international research organizations and statistics bodies, in particular, the websites of World Bank and General Statistics Office of were used. The leading role of the manufacturing industry in achieving sustainable economic development in developing countries, including Vietnam, was determined. Based on an assessment of the levels of development of the manufacturing industry in Vietnam from 2011 to 2019 and the state of production of the main manufacturing industries under the influence of the coronavirus pandemic in 2020, urgent problems of the development of the manufacturing industry in the context of Industry 4.0 in Vietnam were identified. The coronavirus pandemic, on the one hand, is seen as the reason for the slowdown in production growth in the manufacturing industry, and on the other hand, as a condition for accelerating digital transformation in industrial manufacturing enterprises. The article identifies the main challenges and prospects for the development of the manufacturing industry in Vietnam in the fourth industrial revolution. The human resource challenge for the development of manufacturing in the context of the fourth industrial revolution was identified in some specific industries such as textiles, food processing, machinery and equipment manufacturing by analyzing the Report of 2019 about Industry 4.0 Readiness of Vietnam’s industrial enterprises. The main priority areas for improving the production of the manufacturing industry in Vietnam to achieve sustainable industrial development are presented. The results of the work can be used in the development of policies for the development of the manufacturing industry not only in Vietnam, but also in other developing countries


2018 ◽  
Vol 13 (1) ◽  
pp. 17 ◽  
Author(s):  
Hoedi Prasetyo ◽  
Wahyudi Sutopo

AbstrakIstilah Industri 4.0 lahir dari ide tentang revolusi industri keempat. Keberadaannya menawarkan banyak potensi manfaat. Guna mewujudkan Industri 4.0, diperlukan keterlibatan akademisi dalam bentuk riset. Artikel ini bertujuan untuk menelaah aspek dan arah perkembangan riset terkait Industri 4.0. Pendekatan yang digunakan adalah studi terhadap beragam definisi dan model kerangka Industri 4.0 serta pemetaan dan analisis terhadap sejumlah publikasi. Beberapa publikasi bertema Industri 4.0 dipilah menurut metode penelitian, aspek kajian dan bidang industri. Hasil studi menunjukkan Industri 4.0 memiliki empat belas aspek. Ditinjau dari metode penelitian, sebagian besar riset dilakukan melalui metode deskriptif dan konseptual. Ditinjau dari aspeknya, aspek bisnis dan teknologi menjadi fokus riset para peneliti. Ditinjau dari bidang industri penerapannya, sebagian besar riset dilakukan di bidang manufaktur. Ditinjau dari jumlahnya, riset terkait Industri 4.0 mengalami tren kenaikan yang signifikan. Artikel ini diharapkan dapat memberi gambaran mengenai apa itu Industri 4.0, perkembangan dan potensi riset yang ada di dalamnya. AbstractIndustry 4.0: Study of Aspects Classification and Future Research Direction. The term Industrial 4.0 refers to the idea about fourth industrial revolution. In order to realize Industry 4.0, academic involvement is required in the form of research. This article aims to define the aspects and future direction of research related to Industry 4.0. Literature review of various definition and concept models of Industry 4.0. was conducted to acquire the aspects. Mapping and analysis of several publications were conducted to determine the future direction of research. Publications were sorted according to research methods, aspects and type of industry. The result shows that Industry 4.0 has fourteen aspects. Based on research methods, most of the research is done through descriptive and conceptual methods. Business and technology aspects become the focus of the researchers and most of the research is done in manufacturing industry. Based on quantities, Industrial 4.0 research has experienced a significant upward trend. This article is expected to illustrate the concept, future development and research trend of Industry 4.0.Keywords: Industry 4.0; Literature Review; Research Trend


2019 ◽  
Vol 16 (1) ◽  
pp. 29-36
Author(s):  
Satrio Utomo ◽  
Nugraheni Setiastuti

The era of technology is disrupted at this time, better known as the Industrial Revolution 4.0,  already been applied to a various field of each country. Industry 4.0 include Internet of  Thing (IoT), Artificial Intelligence (AI), human-machine interface, 3-D printing, and Advanced Robotics.  Industry 4.0 is expected to increase productivity, business efficiency, and competitiveness. Indonesia’s Ministry of Industry has designed ‘Making Indonesia 4.0’  by preparing a roadmap and strategy to meet industry 4.0. There are 5 (five) prioritize manufacturing industrial sectors: Food and Beverages, Textile and Apparel, Electronics, Chemical, and Automotive. For studies conducted in the textile and apparel industry, as one of the priority industries. The Research study was conducted to determine the level of readiness of the textile manufacturing industry to meet industry 4.0 based on aspects of Technology, Processes, and Organizations. The method used is The Singapore Smart Industry Readiness Index. By knowing this level of readiness, it will help the industry to know the position of the current level of readiness and what needs are needed to reach the level of industry 4.0. By knowing the position, is able to know the strengths and weaknesses of technology from the operational technology used, which then knows the technological priorities that are of concern by management to increase industrial competitiveness towards industrial level 4.0.Based on the results of the mapping, related to the level of readiness of the textile industry of PT. Grand Textile based on technological aspects (1.56), process aspects (1.33) and organizational aspects (2.00) amounted to 1.63; position at level 1 which is categorized as New Comer.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-9
Author(s):  
Pradeep Kumar

Sustainable manufacturing has been a popular topic of research for quite some time now. There are various concepts and ideas which have claimed to have a significant impact on sustainability of the manufacturing industry like lean, green and agile manufacturing. Industry 4.0 is the latest and by far the one with the maximum potential of changing the manufacturing sector forever. It is rightly called as “the fourth industrial revolution”. It is a wide concept which covers many state of the art technologies like the Internet of Things (IoT), Artificial Intelligence, Big Data, Augmented reality etc. But like every big revolution, it is to face many challenges also. In this review, we are looking at this ‘yet in infancy’ concept and its role in achieving a sustainable manufacturing sector as discussed by researchers. Different scholars have come up with different challenges to implementation of I4.0 which they thought to be of some significance. There is going to  review such challenges making a list of 13 such challenges. Then, it also throw some light on the new challenge faced by all of humanity in the form of SARS-CoV-2 pandemic and how it is affecting the manufacturing sector.


Author(s):  
Vladimir Mićić

The fourth industrial revolution is about the development of Industry 4.0, the changing of the production paradigm and economic digitalization. The research subject are the development conditions of Industry 4.0 in the Republic of Serbia. The main research objective is to point out the importance of the efficient development of Industry 4.0 and the implementation of structural changes through the process of digitalization and application of technological innovation in the manufacturing industry. The method of analysis is used to identify the concepts of Industry 4.0 and the new industrial paradigm. The comparative method is used to compare technological criteria and changes. The development conditions of Industry 4.0 are analyzed indirectly through technological criteria and innovation, i.e. data obtained from survey on innovation, individual innovation and technology indicators and composite indicators. Industry 4.0 is an important factor in technological and structural change, economic growth and competitiveness. The research results show that the Republic of Serbia lacks incentives for the development of Industry 4.0. The research results are useful to industrial policy makers as they point to some of the key factors and directions of change to create the conditions for the development of Industry 4.0, the manufacturing industry and the digital transformation of the economy.


2020 ◽  
Vol 21 (1) ◽  
pp. 64-84
Author(s):  
Alexander Vestin ◽  
Kristina Säfsten ◽  
Malin Löfving

Purpose The meaning of Industry 4.0 has started to be outlined for the construction industry, but there is still limited knowledge on the implications for the single-family wooden house building industry. The purpose of this paper is to expand the understanding of what the fourth industrial revolution implies for the single-family wooden house industry. The paper contributes with practitioners’ view of the content and meaning of a smart single-family wooden house factory. Design/methodology/approach An exploratory multiple case study was carried out at two Swedish single-family wooden house builders, combined with a traditional literature review. Findings As a result of a multiple case studies, the content and meaning of a smart single-family wooden house factory was elaborated on. In total, 15 components of a smart single-family wooden house factory were identified, of which 8 corresponded to the components of Industry 4.0 as described in other sectors. Research limitations/implications The study can be expanded to also include multi-family wooden house builders and other branches of the offsite wooden building industry. Practical implications Managers in the house-building industry who want to improve and strive for a smart single-family wooden house factory can learn from this study, get an insight of what other companies consider as important and how it relates to Industry 4.0. Originality/value To the best of the authors’ knowledge, this study is a first attempt to understand what Industry 4.0 mean and how it can be accomplished for the single-family wooden house offsite manufacturing industry.


2021 ◽  
Vol 11 (8) ◽  
pp. 3568
Author(s):  
Amr T. Sufian ◽  
Badr M. Abdullah ◽  
Muhammad Ateeq ◽  
Roderick Wah ◽  
David Clements

The fourth industrial revolution is the transformation of industrial manufacturing into smart manufacturing. The advancement of digital technologies that make the trend Industry 4.0 are considered as the transforming force that will enable this transformation. However, Industry 4.0 digital technologies need to be connected, integrated and used effectively to create value and to provide insightful information for data driven manufacturing. Smart manufacturing is a journey and requires a roadmap to guide manufacturing organizations for its adoption. The objective of this paper is to review different methodologies and strategies for smart manufacturing implementation to propose a simple and a holistic roadmap that will support the transition into smart factories and achieve resilience, flexibility and sustainability. A comprehensive review of academic and industrial literature was preformed based on multiple stage approach and chosen criteria to establish existing knowledge in the field and to evaluate latest trends and ideas of Industry 4.0 and smart manufacturing technologies, techniques and applications in the manufacturing industry. These criteria are sub-grouped to fit within various stages of the proposed roadmap and attempts to bridge the gap between academia and industry and contributes to a new knowledge in the literature. This paper presents a conceptual approach based on six stages. In each stage, key enabling technologies and strategies are introduced, the common challenges, implementation tips and case studies of industrial applications are discussed to potentially assist in a successful adoption. The significance of the proposed roadmap serve as a strategic practical tool for rapid adoption of Industry 4.0 technologies for smart manufacturing and to bridge the gap between the advanced technologies and their application in manufacturing industry, especially for SMEs.


2020 ◽  
Vol 32 (2) ◽  
pp. 37-48
Author(s):  
Péter Zentay ◽  
Gerald Mies

The industrial environment has been changing rapidly over the past few years. Today, the Internet of Things (IoT) is finding its way into the global industry sectors. This ongoing industrial digitisation raises new challenges for the whole manufacturing industry. Smart factories are on the rise and promise higher efficiency and productivity. New technological developments in the field of hardware and software significantly extend today’s possibilities. Cutting- edge digital manufacturing solutions, especially new smart machines and collaborative robots are being promoted as key enabling technologies in this fourth industrial revolution. However, in the era of Industry 4.0 the holistic integration is a matter of great importance. Taking a step towards Industry 4.0, it is crucial to give equal consideration to products, production processes and business activities.


Sign in / Sign up

Export Citation Format

Share Document