CHOOSING THE OPTIMAL PLAN FOR ENERGY EFFICIENT REENGINEERING OF CORPO-RATE COMPUTER NETWORK

2017 ◽  
Vol 25 (101) ◽  
pp. 341-346
Author(s):  
Sergey A., Nesterenko ◽  
2014 ◽  
Vol 31 (06) ◽  
pp. 1450049
Author(s):  
Shin-Guang Chen

Computer networks are important infrastructures required by many modern corporations today. Maintaining a reliable computer network becomes an important issue in daily business operations. A computer network usually consists of components (including links or vertices) that may have several states due to failure, partial failure or maintenance, making it a multi-state computer network (MCN). This paper proposes a novel approach to create an optimal component quality plan in MCN. Finding the optimal component quality plan for an MCN requires searching for an optimal plan such that each component in the network has the proper level of quality while the network maintains highly reliable functionality. Because the costs of quality components are diversified, an appropriate plan for component quality distribution cannot only greatly reduce the cost of network installation but also maintain the network reliability. Another important consideration is that high-quality and expensive components may not increase network reliability if they are not placed appropriately. A novel heuristic approach is proposed to efficiently search for such plan. A comparison with the implicit enumeration method is conducted. The results show that the proposed approach is very effective and efficient. Some numerical examples are illustrated and explained in detail in this paper.


Author(s):  
L. S. Chumbley ◽  
M. Meyer ◽  
K. Fredrickson ◽  
F.C. Laabs

The Materials Science Department at Iowa State University has developed a laboratory designed to improve instruction in the use of the scanning electron microscope (SEM). The laboratory makes use of a computer network and a series of remote workstations in a classroom setting to provide students with increased hands-on access to the SEM. The laboratory has also been equipped such that distance learning via the internet can be achieved.A view of the laboratory is shown in Figure 1. The laboratory consists of a JEOL 6100 SEM, a Macintosh Quadra computer that acts as a server for the network and controls the energy dispersive spectrometer (EDS), four Macintosh computers that act as remote workstations, and a fifth Macintosh that acts as an internet server. A schematic layout of the classroom is shown in Figure 2. The workstations are connected directly to the SEM to allow joystick and computer control of the microscope. An ethernet connection between the Quadra and the workstations allows students seated there to operate the EDS. Control of the microscope and joystick is passed between the workstations by a switch-box assembly that resides at the microscope console. When the switch-box assembly is activated a direct serial line is established between the specified workstation and the microscope via the SEM’s RS-232.


2011 ◽  
Author(s):  
B. Smitha Shekar ◽  
M. Sudhakar Pillai ◽  
G. Narendra Kumar

2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Ye.Ye. Nikitin

The current situation in the sphere of district heating is analysed on the basis of use of the cognitive approach. The presence of closed chains of cause-effect relationships of negative factors and conflicts of target settings of the subjects in the field of district heating is shown. The conceptual model of energy efficient modernization of district heating systems is proposed. This model includes indicators of the current status of heat sources, networks and heat consumers, energetic and economic models, restrictions, procedure of forming and analysis of the mutual influence of the recommended projects. The quantitative data on indicators of the current state of district heating systems of the cities of Ukraine are presented. The interrelation between indicators of the current state and projects of energy efficient modernization of district heating systems is shown. Assessment of energy self-sufficiency of municipal district heating systems on condition of thermal modernization of buildings is carried out. The creation of energy management systems at the district heating enterprises is proposed. Bib. 6, Fig. 7, Tab. 5.


Sign in / Sign up

Export Citation Format

Share Document