scholarly journals Kinetics of Sulfide Removal in Biofilter Employing Sulfur-Oxidizing Bacteria on Salak Fruit Seeds

2020 ◽  
Vol 8 (2) ◽  
pp. 118-123
Author(s):  
Retno Ambarwati Sigit Lestari ◽  
Wahyudi Budi Sediawan ◽  
Sarto Sarto

Sulfur-oxidizing bacterias were isolated then grown on salak fruit seeds forming bio-film. Their performances in sulfide removal were experimentally observed. The salak fruit seeds were then used as packing material in a cylinder. Liquid containing 83 ppm of sodium sulfide was flown through the bed. Then the sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be quasi-steady-state. Mean while the bio-film grows on the surface of the seeds and the sulfide oxidation takes place in the bio-film. Since the bio-film is very thin, the sulfide concentration in the bio-film is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can be applied to quantitatively describe the removal of sulfide in liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting.

2021 ◽  
Vol 9 (3) ◽  
pp. 611
Author(s):  
Zhendong Yang ◽  
Zhenghua Liu ◽  
Aleksandra Sklodowska ◽  
Marcin Musialowski ◽  
Tomasz Bajda ◽  
...  

Management of excessive aqueous sulfide is one of the most significant challenges of treating effluent after biological sulfate reduction for metal recovery from hydrometallurgical leachate. The main objective of this study was to characterize and verify the effectiveness of a sulfide-oxidizing bacterial (SOB) consortium isolated from post-mining wastes for sulfide removal from industrial leachate through elemental sulfur production. The isolated SOB has a complete sulfur-oxidizing metabolic system encoded by sox genes and is dominated by the Arcobacter genus. XRD analysis confirmed the presence of elemental sulfur in the collected sediment during cultivation of the SOB in synthetic medium under controlled physicochemical conditions. The growth yield after three days of cultivation reached ~2.34 gprotein/molsulfid, while approximately 84% of sulfide was transformed into elemental sulfur after 5 days of incubation. Verification of isolated SOB on the industrial effluent confirmed that it can be used for effective sulfide concentration reduction (~100% reduced from the initial 75.3 mg/L), but for complete leachate treatment (acceptable for discharged limits), bioaugmentation with other bacteria is required to ensure adequate reduction of chemical oxygen demand (COD).


2011 ◽  
Vol 109 (3) ◽  
pp. 637-646 ◽  
Author(s):  
Amber R. Boles ◽  
Teresa Conneely ◽  
Robert McKeever ◽  
Paul Nixon ◽  
Klaus R. Nüsslein ◽  
...  

2017 ◽  
Vol 896 ◽  
pp. 175-181
Author(s):  
Miao Liu ◽  
Peng Zhai ◽  
Qiang Long ◽  
Chun Yang Wang ◽  
Bo Han Xiao

Severe regassing was detected by previous experiment on degassing method for aluminium-silicon alloy by injecting argon with rotation. In order to further degas, ultrasonic degassing was adopted. To describe the cavitation bubbles’ movement, traditional Rayleigh-Plesset equation was modified. Classic Rayleigh-Plesset equation is strongly restricted by the applicable condition that the centre of the bubble is fixed. In this paper, a position-related Rayleigh-Plesset equation is proposed to describe the cavitation bubble's floating movement in aluminium-silicon alloy of 750°C with the coefficient of viscosity of 0.0012. As the calculation results, a bubble stimulated by high-low-frequency vibration can float up faster with violent vibration.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 263
Author(s):  
Federico Aulenta ◽  
Enza Palma ◽  
Ugo Marzocchi ◽  
Carolina Cruz Viggi ◽  
Simona Rossetti ◽  
...  

In anaerobic sediments, microbial degradation of petroleum hydrocarbons is limited by the rapid depletion of electron acceptors (e.g., ferric oxide, sulfate) and accumulation of toxic metabolites (e.g., sulfide, following sulfate reduction). Deep-sea sediments are increasingly impacted by oil contamination, and the elevated hydrostatic pressure (HP) they are subjected to represents an additional limitation for microbial metabolism. While the use of electrodes to support electrobioremediation in oil-contaminated sediments has been described, there is no evidence on their applicability for deep-sea sediments. Here, we tested a passive bioelectrochemical system named ”oil-spill snorkel” with two crude oils carrying different alkane contents (4 vs. 15%), at increased or ambient HP (10 vs. 0.1 MPa). Snorkels enhanced alkanes biodegradation at both 10 and 0.1 MPa within only seven weeks, as compared to nonconductive glass controls. Microprofiles in anaerobic, contaminated sediments indicated that snorkels kept sulfide concentration to low titers. Bulk-sediment analysis confirmed that sulfide oxidation by snorkels largely regenerated sulfate. Hence, the sole application of snorkels could eliminate a toxicity factor and replenish a spent electron acceptor at increased HP. Both aspects are crucial for petroleum decontamination of the deep sea, a remote environment featured by low metabolic activity.


1999 ◽  
Vol 202 (17) ◽  
pp. 2245-2257 ◽  
Author(s):  
D. Julian ◽  
F. Gaill ◽  
E. Wood ◽  
A.J. Arp ◽  
C.R. Fisher

Vestimentiferan tubeworms have no mouth or gut, and the majority of their nutritional requirements are provided by endosymbiotic bacteria that utilize hydrogen sulfide oxidation to fix CO(2) into organic molecules. It has been assumed that all vestimentiferans obtain the sulfide, O(2) and CO(2) needed by the bacteria across the plume (gill) surface, but some live in locations where very little sulfide is available in the sea water surrounding the plume. We propose that at least some of these vestimentiferans can grow a posterior extension of their body and tube down into the sea-floor sediment, and that they can use this extension, which we call the ‘root’, to take up sulfide directly from the interstitial water. In this study of the vestimentiferan Lamellibrachia sp., found at hydrocarbon seeps in the Gulf of Mexico at depths of approximately 700 m, we measured seawater and interstitial sulfide concentrations in the hydrocarbon seep habitat, determined the structural characteristics of the root tube using transmission electron microscopy, characterized the biochemical composition of the tube wall, and measured the sulfide permeability of the root tube. We found that, while the sulfide concentration is less than 1 (μ)mol l(−)(1) in the sea water surrounding the gills, it can be over 1.5 mmol l(−)(1) at a depth of 10–25 cm in sediment beneath tubeworm bushes. The root tube is composed primarily of giant (β)-chitin crystallites (12–30 % of total mass) embedded in a protein matrix (50 % of total mass). Root tubes have a mean diameter of 1.4 mm, a mean wall thickness of 70 (μ)m and can be over 20 cm long. The tubeworm itself typically extends its body to the distal tip of the root tube. The root tube wall was quite permeable to sulfide, having a permeability coefficient at 20 degrees C of 0. 41×10(−)(3)cm s(−)(1), with root tube being 2.5 times more permeable to sulfide than trunk tube of the same diameter. The characteristics of the root suggest that it reaches down to the higher sulfide levels present in the deeper sediment and that it functions to increase the surface area available for sulfide uptake in a manner analogous to a respiratory organ.


2021 ◽  
pp. 72-74
Author(s):  

A scheme is proposed and analytical expressions are obtained for calculating the kinematics, pressure and damageability of the material during hot extrusion of ribs on body parts. The equations of states during creep, energy equilibrium, kinetics of material discontinuity are used. The calculation results are presented. Keywords: extrusion, local heating, stiffening rib, viscosity, plasticity, stress relaxation, pressure, velocity field [email protected], [email protected]


2018 ◽  
Vol 78 (9) ◽  
pp. 1916-1924 ◽  
Author(s):  
Lucie Pokorna-Krayzelova ◽  
Dana Vejmelková ◽  
Lara Selan ◽  
Pavel Jenicek ◽  
Eveline I. P. Volcke ◽  
...  

Abstract Hydrogen sulfide is a toxic and usually undesirable by-product of the anaerobic treatment of sulfate-containing wastewater. It can be removed through microaeration, a simple and cost-effective method involving the application of oxygen-limiting conditions (i.e., dissolved oxygen below 0.1 mg L−1). However, the exact transformation pathways of sulfide under microaerobic conditions are still unclear. In this paper, batch experiments were performed to study biochemical and chemical sulfide oxidation under microaerobic conditions. The biochemical experiments were conducted using a strain of Sulfuricurvum kujiense. Under microaerobic conditions, the biochemical sulfide oxidation rate (in mg S L−1 d−1) was approximately 2.5 times faster than the chemical sulfide oxidation rate. Elemental sulfur was the major end-product of both biochemical and chemical sulfide oxidation. During biochemical sulfide oxidation elemental sulfur was in the form of white flakes, while during chemical sulfide oxidation elemental sulfur created a white suspension. Moreover, a mathematical model describing biochemical and chemical sulfide oxidation was developed and calibrated by the experimental results.


1979 ◽  
Vol 32 (12) ◽  
pp. 2597 ◽  
Author(s):  
AO Filmer ◽  
AJ Parker ◽  
BW Clare ◽  
LGB Wadley

The kinetics of oxidation with oxygen of chalcocite, Cu2S, to CuS in buffered aqueous ammonia at pH 10.5 at 30� can be modeled approximately by a shrinking core of Cu2S within a thickening shell of CuxS (x ≥ 1). The Cu2S core offers partial cathodic protection to the CuxS and diffusion of Cu+ through CuxS controls the rate of reaction. The kinetics of oxidation of covellite, CuS, to Cu2+, sulfur and sulfate ions in the same solvent can be modeled by a shrinking core of CuS surrounded by a shrinking sphere of CuyS (y < 1) which is much less effectively protected cathodically by the CuS core. Oxidation of CuS is subject to mixed chemical and diffusion control. Rates of oxidation of NiS and of CuS, in the presence and absence of tetrachloroethene and ammonium sulfate, show that, whether sulfur is a major oxidation product or not, the presence of sulfur has very little, if any, influence on the rate or mechanism of oxidation. This is contrary to current ideas on metal sulfide oxidation.


Extremophiles ◽  
2004 ◽  
Vol 8 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Horia Banciu ◽  
Dimitry Y. Sorokin ◽  
Robbert Kleerebezem ◽  
Gerard Muyzer ◽  
Erwin A. Galinski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document