scholarly journals MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research

2016 ◽  
Vol 174 (5) ◽  
pp. R225-R238 ◽  
Author(s):  
Jonàs Juan-Mateu ◽  
Olatz Villate ◽  
Décio L Eizirik

Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic β cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target β cells, but the intracellular signals that decide β cell fate remain to be clarified. Alternative splicing (AS) is a complex post-transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic β cells contribute to the pathogenesis of T1D. Splicing switches in T cells and in lymph node stromal cells are involved in the modulation of the immune response against β cells, while β cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate β cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in β cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy.

2007 ◽  
Vol 193 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Dominique A Glauser ◽  
Werner Schlegel

FOXO transcription factors critically control fundamental cellular processes, including metabolism, cell differentiation, cell cycle arrest, DNA repair, and other reactions to cellular stress. FOXO factors sense the balance between stimuli promoting growth and differentiation versus stress stimuli signaling damage. Integrated through the FOXO system, these divergent stimuli decide on cell fate, a choice between proliferation, differentiation, or apoptosis. In pancreatic β cells, most recent evidence highlights complex FOXO-dependent responses to glucose, insulin, or other growth factors, which include regulatory feedback. In the short term, FOXO-dependent mechanisms help β cells to accomplish their endocrine function, and may increase their resistance to oxidative stress due to transient hyperglycemia. In the long term, FOXO-dependent responses lead to the adaptation of β cell mass, conditioning the future ability of the organism to produce insulin and cope with changes in fuel abundance. FOXO emerges as a key factor for the maintenance of a functional endocrine pancreas and represents an interesting element in the development of therapeutic approaches to treat diabetes. This review on the role of FOXO transcription factors in pancreatic β cells has three parts. In Part I, FOXO transcription factors will be presented in general: structure, molecular mechanisms of regulation, cellular functions, and physiological roles. Part II will focus on specific data about FOXO factors in pancreatic β cells. Lastly in Part III, it will be attempted to combine general and β cell-specific knowledge with the aim to envisage globally the role of FOXO factors in β cell-linked physiology and disease.


2021 ◽  
Vol 22 (13) ◽  
pp. 6713
Author(s):  
Romana Bohuslavova ◽  
Ondrej Smolik ◽  
Jessica Malfatti ◽  
Zuzana Berkova ◽  
Zaneta Novakova ◽  
...  

Diabetes is a metabolic disease that involves the death or dysfunction of the insulin-secreting β cells in the pancreas. Consequently, most diabetes research is aimed at understanding the molecular and cellular bases of pancreatic development, islet formation, β-cell survival, and insulin secretion. Complex interactions of signaling pathways and transcription factor networks regulate the specification, growth, and differentiation of cell types in the developing pancreas. Many of the same regulators continue to modulate gene expression and cell fate of the adult pancreas. The transcription factor NEUROD1 is essential for the maturation of β cells and the expansion of the pancreatic islet cell mass. Mutations of the Neurod1 gene cause diabetes in humans and mice. However, the different aspects of the requirement of NEUROD1 for pancreas development are not fully understood. In this study, we investigated the role of NEUROD1 during the primary and secondary transitions of mouse pancreas development. We determined that the elimination of Neurod1 impairs the expression of key transcription factors for α- and β-cell differentiation, β-cell proliferation, insulin production, and islets of Langerhans formation. These findings demonstrate that the Neurod1 deletion altered the properties of α and β endocrine cells, resulting in severe neonatal diabetes, and thus, NEUROD1 is required for proper activation of the transcriptional network and differentiation of functional α and β cells.


2009 ◽  
Vol 83 (16) ◽  
pp. 8004-8011 ◽  
Author(s):  
Young-Sun Lee ◽  
Na Li ◽  
Seungjin Shin ◽  
Hee-Sook Jun

ABSTRACT The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic β cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in β-cell destruction by producing soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 × 102 PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of β cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1β and TNF-α mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor κB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic β cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and β-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.


2010 ◽  
Vol 299 (1) ◽  
pp. C1-C6 ◽  
Author(s):  
Yoshio Fujitani ◽  
Takashi Ueno ◽  
Hirotaka Watada

Autophagy is an evolutionarily conserved machinery for degradation and recycling of various cytoplasmic components such as long-lived proteins and organelles. In pancreatic β-cells, as in most other cells, autophagy is also important for the low basal turnover of ubiquitinated proteins and damaged organelles under normal conditions. Insulin resistance results in upregulation of autophagic activity in β-cells. Induced autophagy in β-cells plays a pivotal role in the adaptive expansion of β-cell mass. Nevertheless, it is not clear whether autophagy is protective or detrimental in response to cellular stresses in β-cells. In this review, we describe the crucial roles of autophagy in normal function of β-cells and discuss how dysfunction of the autophagic machinery could lead to the development of diabetes mellitus.


2003 ◽  
Vol 285 (1) ◽  
pp. E138-E154 ◽  
Author(s):  
Leonid E. Fridlyand ◽  
Natalia Tamarina ◽  
Louis H. Philipson

We have developed a detailed mathematical model of ionic flux in β-cells that includes the most essential channels and pumps in the plasma membrane. This model is coupled to equations describing Ca2+, inositol 1,4,5-trisphosphate (IP3), ATP, and Na+ homeostasis, including the uptake and release of Ca2+ by the endoplasmic reticulum (ER). In our model, metabolically derived ATP activates inward Ca2+ flux by regulation of ATP-sensitive K+ channels and depolarization of the plasma membrane. Results from the simulations support the hypothesis that intracellular Na+ and Ca2+ in the ER can be the main variables driving both fast (2–7 osc/min) and slow intracellular Ca2+ concentration oscillations (0.3–0.9 osc/min) and that the effect of IP3 on Ca2+ leak from the ER contributes to the pattern of slow calcium oscillations. Simulations also show that filling the ER Ca2+ stores leads to faster electrical bursting and Ca2+ oscillations. Specific Ca2+ oscillations in isolated β-cell lines can also be simulated.


2015 ◽  
Vol 290 (34) ◽  
pp. 20687-20699 ◽  
Author(s):  
Cong Yu ◽  
Shang Cui ◽  
Chen Zong ◽  
Weina Gao ◽  
Tongfu Xu ◽  
...  

The role of NR4A1 in apoptosis is controversial. Pancreatic β-cells often face endoplasmic reticulum (ER) stress under adverse conditions such as high free fatty acid (FFA) concentrations and sustained hyperglycemia. Severe ER stress results in β-cell apoptosis. The aim of this study was to analyze the role of NR4A1 in ER stress-mediated β-cell apoptosis and to characterize the related mechanisms. We confirmed that upon treatment with the ER stress inducers thapsigargin (TG) or palmitic acid (PA), the mRNA and protein levels of NR4A1 rapidly increased in both MIN6 cells and mouse islets. NR4A1 overexpression in MIN6 cells conferred resistance to cell loss induced by TG or PA, as assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and TUNEL assays indicated that NR4A1 overexpression also protected against ER stress-induced apoptosis. This conclusion was further confirmed by experiments exploiting siRNA to knockdown NR4A1 expression in MIN6 cells or exploiting NR4A1 knock-out mice. NR4A1 overexpression in MIN6 cells reduced C/EBP homologous protein (CHOP) expression and Caspase3 activation induced by TG or PA. NR4A1 overexpression in MIN6 cells or mouse islets resulted in Survivin up-regulation. A critical regulatory element was identified in Survivin promoter (−1872 bp to −1866 bp) with a putative NR4A1 binding site; ChIP assays demonstrated that NR4A1 physically associates with the Survivin promoter. In conclusion, NR4A1 protects pancreatic β-cells against ER stress-mediated apoptosis by up-regulating Survivin expression and down-regulating CHOP expression, which we termed as “positive and negative regulation.”


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ka-Cheuk Liu ◽  
Alethia Villasenor ◽  
Maria Bertuzzi ◽  
Nicole Schmitner ◽  
Niki Radros ◽  
...  

To investigate the role of the vasculature in pancreatic β-cell regeneration, we crossed a zebrafish β-cell ablation model into the avascular npas4l mutant (i.e. cloche). Surprisingly, β-cell regeneration increased markedly in npas4l mutants owing to the ectopic differentiation of β-cells in the mesenchyme, a phenotype not previously reported in any models. The ectopic β-cells expressed endocrine markers of pancreatic β-cells, and also responded to glucose with increased calcium influx. Through lineage tracing, we determined that the vast majority of these ectopic β-cells has a mesodermal origin. Notably, ectopic β-cells were found in npas4l mutants as well as following knockdown of the endothelial/myeloid determinant Etsrp. Together, these data indicate that under the perturbation of endothelial/myeloid specification, mesodermal cells possess a remarkable plasticity enabling them to form β-cells, which are normally endodermal in origin. Understanding the restriction of this differentiation plasticity will help exploit an alternative source for β-cell regeneration.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Gaurav Verma ◽  
Aparna Dixit ◽  
Craig S. Nunemaker

The role of mitochondria in apoptosis is well known; however, the mechanisms linking mitochondria to the proapoptotic effects of proinflammatory cytokines, hyperglycemia, and glucolipotoxicity are not completely understood. Complex Ca2+ signaling has emerged as a critical contributor to these proapoptotic effects and has gained significant attention in regulating the signaling processes of mitochondria. In pancreatic β-cells, Ca2+ plays an active role in β-cell function and survival. Prohibitin (PHB), a mitochondrial chaperone, is actively involved in maintaining the architecture of mitochondria. However, its possible interaction with Ca2+-activated signaling pathways has not been explored. The present review aims to examine potential crosstalk between Ca2+ signaling and PHB function in pancreatic β-cells. Moreover, this review will focus on the effects of cytokines and glucolipotoxicity on Ca2+ signaling and its possible interaction with PHB. Improved understanding of this important mitochondrial protein may aid in the design of more targeted drugs to identify specific pathways involved with stress-induced dysfunction in the β-cell.


2011 ◽  
Vol 210 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Diana Choi ◽  
Stephanie A Schroer ◽  
Shun Yan Lu ◽  
Erica P Cai ◽  
Zhenyue Hao ◽  
...  

Cytochrome c is one of the central mediators of the mitochondrial or the intrinsic apoptotic pathway. Mice harboring a ‘knock-in’ mutation of cytochrome c, impairing only its apoptotic function, have permitted studies on the essential role of cytochrome c-mediated apoptosis in various tissue homeostasis. To this end, we examined the role of cytochrome c in pancreatic β-cells under homeostatic conditions and in diabetes models, including those induced by streptozotocin (STZ) and c-Myc. Previous studies have shown that both STZ- and c-Myc-induced β-cell apoptosis is mediated through caspase-3 activation; however, the precise mechanism in these modes of cell death was not characterized. The results of our study show that lack of functional cytochrome c does not affect glucose homeostasis or pancreatic β-cell mass under basal conditions. Moreover, the cytochrome c-mediated intrinsic apoptotic pathway is required for neither STZ- nor c-Myc-induced β-cell death. We also observed that the extrinsic apoptotic pathway mediated through caspase-8 was not essential in c-Myc-induced β-cell destruction. These findings suggest that cytochrome c is not required for STZ-induced β-cell apoptosis and, together with the caspase-8-mediated extrinsic pathway, plays a redundant role in c-Myc-induced β-cell apoptosis.


2019 ◽  
Vol 20 (24) ◽  
pp. 6110 ◽  
Author(s):  
Christiane Klec ◽  
Gabriela Ziomek ◽  
Martin Pichler ◽  
Roland Malli ◽  
Wolfgang F. Graier

Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.


Sign in / Sign up

Export Citation Format

Share Document