Influence of meal composition on the postprandial response of the pituitary–thyroid axis

1995 ◽  
Vol 133 (1) ◽  
pp. 75-79 ◽  
Author(s):  
Vinay Kamat ◽  
Wendy L Hecht ◽  
Robert T Rubin

Kamat V, Hecht WL, Rubin RT. Influence of meal composition on the postprandial response of the pituitary–thyroid axis. Eur J Endocrinol 1995;133:75–9. ISSN 0804–4643 Ingestion of food can result in an acute decline of serum thyrotropin (TSH) concentrations, but it is not known whether meal composition and/or stomach distension are influential. Normal men and women were given a normocaloric or hypocaloric, isobulk meal at lunch and at dinner in a randomized design. The normocaloric, but not the isobulk, meal resulted in a significant decline in serum TSH at both lunch and dinner; thyroid hormones and cortisol were not affected significantly. These findings suggest that meal composition is influential in the acute postprandial decline of serum TSH in man. A possible mechanism is food-induced elevation of somatostatin and consequent suppression of TSH secretion. Robert T Rubin, Neurosciences Research Center, Allegheny General Hospital, 320 E North Ave. Pittsburgh, PA 15212-4772, USA

1978 ◽  
Vol 56 (6) ◽  
pp. 950-955 ◽  
Author(s):  
J. H. Dussault ◽  
P. Walker

The effect of chronic propylthiouracil (PTU) and low iodide diet (LID) on the development of the hypothalamo–pituitary–thyroid axis in the rat has been studied. Pregnant and neonatal rats received 0.05% PTU in their drinking water or LID (distilled water and LID: Teklad Mills, Madison, Wisconsin). Control animals received tap water and Purina rat chow ad libitum. Hypothalamic thyrotropin-releasing hormone (TRH), pituitary and serum thyroid-stimulating hormone (THS), and serum thyroxine (T4) and triiodothyronine (T3) were measured by specific double-antibody radioimmunoassay. Both PTU- and LID-exposed animals had low hypothalamic TRH concentrations at 1 day and a rapid rise to peak levels of 2.4 ± 0.4 pg/μg protein (mean ± SEM) between 12 and 24 days in the PTU animals and 3.2 ± 0.4 pg/μg protein between 12 and 18 days in the LID rats. Hypothalamic TRH concentrations remained relatively stable in the PTU animals, whereas in the LID rats, after a brief but significant decline from 24 to 28 days, hypothalamic TRH concentrations rose to the highest values observed at 57 days (3.9 ± 0.5 pg/μg protein). Both groups of animals had elevated serum TSH levels at 1 day, with higher values seen in the PTU group (p < 0.01), and both showed a rapid rise at 12 days. Thereafter, serum TSH concentrations remained high in the PTU rats but declined to stable, albeit elevated, levels by 24 days (1260 ± 140 ng/ml) in the LID animals. Hypothyroidism was confirmed in the PTU animals by undetectable T4 and reduced T3 concentrations. In the LID rats, serum T4 concentrations rose from undetectable levels at 1 day to stable values by 32 days (2.18 ± 0.13 μg/dl). Serum T3 rose to peak values of 157.0 ± 6.9 ng/dl at 32 days and was elevated at all times after 12 days. These data suggest that chronic exposure to PTU or LID results in a marked derangement of the ontogenetic pattern of the hypothalamo–pituitary–thyroid axis. In addition, neonatal rats exposed to LID appear to respond appropriately by preferential T3 production.


2009 ◽  
Vol 161 (5) ◽  
pp. 695-703 ◽  
Author(s):  
Ferdinand Roelfsema ◽  
Alberto M Pereira ◽  
Nienke R Biermasz ◽  
Marijke Frolich ◽  
Daniel M Keenan ◽  
...  

ContextThe hypothalamus–pituitary–thyroid axis in Cushing's syndrome may be altered. Previous reports have shown diminished serum TSH concentration and decreased response to TRH.ObjectiveWe analyzed serum TSH profiles in relation to cortisol profiles in patients with hypercortisolism of pituitary (n=16) or primary-adrenal origin (n=11) and after remission by pituitary surgery (n=7) in order to delineate aberrations in the hypothalamus–pituitary–thyroid system.InterventionPatients and controls (n=27) underwent a 24-h blood sampling study. Serum TSH and cortisol were measured with precise methods, and data were analyzed with a deconvolution program, approximate entropy (ApEn), and cosinor regression.ResultsPulsatile TSH secretion and mean TSH pulse mass were diminished during hypercortisolism, independently of etiology (P<0.001). TSH secretion was increased in patients in remission only during daytime due to increased basal secretion (P<0.01). Pulse frequency and half life of TSH were similar in patients and controls. TSH ApEn (irregularity) was increased in patients with hypercortisolism (P<0.01), but was normal in cured patients. Cross-ApEn between TSH and cortisol, a measure of pattern synchrony loss, was increased in active disease, indicating (partial) loss of secretory synchrony. The TSH rhythm was phase delayed in hypercortisolemic patients, but normal in cured patients (P<0.01). Free thyroxine levels were decreased only in pituitary-dependent hypercortisolism compared with controls (P=0.003). Total 24-h TSH correlated negatively and linearly with log-transformed cortisol secretion (R=0.43, P=0.001).ConclusionCortisol excess decreases TSH secretion by diminishing pulsatile release, whereas surgically cured patients have elevated nonpulsatile TSH release. Diminished TSH secretory regularity in active disease suggests glucocorticoid-induced dysregulation of TRH or somatostatinergic/annexin-1 control.


2006 ◽  
Vol 36 (1) ◽  
pp. 73-80 ◽  
Author(s):  
K J Oliveira ◽  
T M Ortiga-Carvalho ◽  
A Cabanelas ◽  
M A L C Veiga ◽  
K Aoki ◽  
...  

The level of thyrotropin (TSH) secretion is determined by the balance of TSH-releasing hormone (TRH) and thyroid hormones. However, neuromedin B (NB), a bombesin-like peptide, highly concentrated in the pituitary, has been postulated to be a tonic inhibitor of TSH secretion. We studied the pituitary–thyroid axis in adult male mice lacking NB receptor (NBR-KO) and their wild-type (WT) littermates. At basal state, NBR-KO mice presented serum TSH slightly higher than WT (18%, P< 0.05), normal intra-pituitary TSH content, and no significant changes in α and β TSH mRNA levels. Serum thyroxine was normal but serum triiodothyronine (T3) was reduced by 24% (P< 0.01) in NBR-KO mice. Pituitaries of NBR-KO mice exhibited no alteration in prolactin mRNA expression but type I and II deiodinase mRNA levels were reduced by 53 and 42% respectively (P< 0.05), while TRH receptor mRNA levels were importantly increased (78%, P< 0.05). The TSH-releasing effect of TRH was significantly higher in NBR-KO than in WT mice (7.1-and 4.0-fold respectively), but, while WT mice presented a 27% increase in serum T3 (P< 0.05) after TRH, NBR-KO mice showed no change in serum T3 after TRH. NBR-KO mice did not respond to exogenous NB, while WT showed a 30% reduction in serum TSH. No compensatory changes in mRNA expression of NB or other bombesin-related peptides and receptors (gastrin-releasing peptide (GRP), GRP-receptor and bombesin receptor subtype-3) were found in the pituitary of NBR-KO mice. Therefore, the data suggest that NB receptor pathways are importantly involved in thyrotroph gene regulation and function, leading to a state where TSH release is facilitated especially in response to TRH, but probably with a less-bioactive TSH. Therefore, the study highlights the important role of NB as a physiological regulator of pituitary–thyroid axis function and gene expression.


Endocrinology ◽  
2011 ◽  
Vol 152 (3) ◽  
pp. 1180-1191 ◽  
Author(s):  
Xiao-Hui Liao ◽  
Caterina Di Cosmo ◽  
Alexandra M. Dumitrescu ◽  
Arturo Hernandez ◽  
Jacqueline Van Sande ◽  
...  

Mice deficient in the thyroid hormone (TH) transporter Mct8 (Mct8KO) have increased 5′-deiodination and impaired TH secretion and excretion. These and other unknown mechanisms result in the low-serum T4, high T3, and low rT3 levels characteristic of Mct8 defects. We investigated to what extent each of the 5′-deiodinases (D1, D2) contributes to the serum TH abnormalities of the Mct8KO by generating mice with all combinations of Mct8 and D1 and/or D2 deficiencies and comparing the resulting eight genotypes. Adding D1 deficiency to that of Mct8 corrected the serum TH abnormalities of Mct8KO mice, normalized brain T3 content, and reduced the impaired expression of TH-responsive genes. In contrast, Mct8D2KO mice maintained the serum TH abnormalities of Mct8KO mice. However, the serum TSH level increased 27-fold, suggesting a severely impaired hypothalamo-pituitary-thyroid axis. The brain of Mct8D2KO manifested a pattern of more severe impairment of TH action than Mct8KO alone. In triple Mct8D1D2KO mice, the markedly increased serum TH levels produced milder brain defect than that of Mct8D2KO at the expense of more severe liver thyrotoxicosis. Additionally, we observed that mice deficient in D2 had an unexplained marked reduction in the thyroid growth response to TSH. Our studies on these eight genotypes provide a unique insight into the complex interplay of the deiodinases in the Mct8 defect and suggest that D1 contributes to the increased serum T3 in Mct8 deficiency, whereas D2 mainly functions locally, converting T4 to T3 to compensate for distinct cellular TH depletion in Mct8KO mice.


2001 ◽  
Vol 169 (1) ◽  
pp. 195-203 ◽  
Author(s):  
J Hassi ◽  
K Sikkila ◽  
A Ruokonen ◽  
J Leppaluoto

In order to evaluate the effects of climatic factors on the secretion of thyroid hormones and TSH in a high latitude population, we have taken serum and urine samples from 20 healthy men from northern Finland (67 degrees -68 degrees N) every 2 months for a period of 14 months. Serum free triiodothyronine (T(3)) levels were lower in February than in August (3.9 vs 4.4 pmol/l, P<0.05) and TSH levels were higher in December than during other months (2.1 vs 1.5-1.7 mU/l, P<0.01). Serum total and free thyroxine (T(4)), total T(3) and reverse T(3) levels and urinary T(4) levels were unchanged. Urinary T(3) levels were significantly higher in winter than in summer. Serum free T(3) correlated highly significantly with the outdoor temperature integrated backwards weekly for 7-56 days (r=0.26 for 1-56 days) from the day when the blood samples were taken. Serum TSH did not show any significant correlation with the thyroid hormones or with the integrated temperature of the previous days, but it did show an inverse and significant correlation (r=-0.31) with the ambient luminosity integrated backwards for 7 days from the day when the blood sample was taken. The gradually increasing correlation between outdoor temperatures and serum free T(3) suggests that the disposal of thyroid hormones is accelerated in winter, leading to low serum free T(3) levels and a high urinary free T(3) excretion. Since there was no correlation between thyroid hormones and serum TSH, the feedback mechanism between TSH and thyroid hormones may not be the only contributing factor, and other factors such as ambient luminosity may at least partly determine serum TSH in these conditions. Also urinary free T(3) appears to be a novel and non-invasive indicator for thyroid physiology.


2002 ◽  
Vol 174 (1) ◽  
pp. 121-125 ◽  
Author(s):  
TM Ortiga-Carvalho ◽  
KJ Oliveira ◽  
BA Soares ◽  
CC Pazos-Moura

Leptin has been shown to stimulate the hypothalamus-pituitary-thyroid axis in fasting rodents; however, its role in thyroid axis regulation under physiological conditions is still under investigation. Here it was investigated in freely fed rats whether leptin modulates thyrotroph function in vivo and whether leptin has direct pituitary effects on TSH release. Since leptin is produced in the pituitary, the possibility was also investigated that leptin may be a local regulator of TSH release. TSH was measured by specific RIA. Freely fed adult rats 2 h after being injected with a single s.c. injection of 8 microg leptin/100 g body weight showed a 2-fold increase in serum TSH (P<0.05). Hemi-pituitary explants incubated with 10(-9) and 10(-7) M leptin for 2 h showed a reduced TSH release of 40 and 50% respectively (P<0.05). Conversely, incubation of hemi-pituitary explants with antiserum against leptin, aiming to block the action of locally produced leptin, resulted in higher TSH release (45%, P<0.05). In conclusion, also in the fed state, leptin has an acute stimulatory effect on TSH release in vivo, acting probably at the hypothalamus. However, the direct pituitary effect of leptin is inhibitory and data also provide evidence that in the rat pituitary leptin may act as an autocrine/paracrine inhibitor of TSH release.


1987 ◽  
Vol 114 (1) ◽  
pp. 41-46 ◽  
Author(s):  
H. Hohtari ◽  
A. Pakarinen ◽  
A. Kauppila

Abstract. The effects of endurance training and season on the function of the anterior pituitary-thyroid axis were studied in 18 female runners and their 12 controls, and in 13 joggers and their 11 controls in Northern Finland, with a large seasonal difference in environmental factors. The serum concentrations of thyrotropin (TSH), thyroxine (T4), free thyroxine (fT4), triiodothyronine (T3), thyroxine binding globulin (TBG) and oestradiol (E2) were measured during one menstrual cycle in the light training season (autumn) and in the hard training season (spring). The responses of TSH to intravenous TRH stimulation were also measured in the luteal phase of the cycle during the hard training season. Endurance running did not affect the basal or TRH-stimulated serum TSH concentrations, while those of T4 and fT4 in runners were lowered in both seasons and that of T3 in the light training season in relation to control subjects. The serum concentrations of TBG were also significantly lower in runners than their controls in the luteal phase in both seasons. The effect of jogging on thyroid hormones was less pronounced. Serum concentrations of TSH, T4, fT4, T3 and TBG were generally slightly higher in spring than in autumn. Strenuous endurance training seems to have minor changes on the function of the thyroid gland. Depressed T4 levels in runners may rather be due to lowered TBG levels than due to direct effect of training. In spring the function of anterior pituitary-thyroid axis is more active than in autumn.


1977 ◽  
Vol 86 (1) ◽  
pp. 128-139 ◽  
Author(s):  
Isabel Pericás ◽  
Trinidad Jolín

ABSTRACT Studies of pituitary and thyroid function have been carried out in normal (intact) and diabetic Wistar rats. Diabetes was induced by a single streptozotocin injection (7 mg/100 g body weight). The animals were fed a low iodine diet (LID), and received a daily sc injection of either KClO4 (20 mg/100 g body weight) or propylthiouracil (PTU) (1.5 mg/100 g body weight) to induce hypothyroidism. Control groups received the same LID but supplemented with 0.8 μg I/g dry weight. In intact rats goitrogen-treatment induces an increase in thyroid weight and in plasma TSH concentration. However, the plasma TSH response to goitrogen-treatment in diabetics indicates that pituitary TSH secretion increases following a reduction in plasma PBI, but the response is less marked than in controls. The difference in plasma TSH between control and diabetic rats provides an explanation for the findings that diabetes diminishes the thyroid growth response to goitrogen-treatment. Moreover, in intact rats the low pituitary TSH content is a consequence of the increase in pituitary TSH secretion, while in the diabetics the low pituitary TSH content cannot be explained by an increase in TSH secretion. The effect of diabetes on the pituitary-thyroid axis cannot be attributed specifically to poor growth, because the changes in pituitary-thyroid function which are observed in the diabetic groups are not seen in intact rats with a growth rate similar to that of insulin deficient rats. Insulin administration to goitrogen-treated diabetic rats results in 1) an increase in the ability of the thyroid tissue to respond to its trophic hormone, 2) an increase in pituitary TSH secretion in response to the lowering of plasma PBI and, 3) an increase in thyroid growth response to goitrogen-treatment. Results are discussed in relation to the assumption that the lack of adequate insulin levels, or its metabolic defects, diminishes the full response of the thyroid to TSH, and affects the pituitary TSH secretion probably as a consequence of altered hypothalamic control of the pituitary function.


1983 ◽  
Vol 104 (2) ◽  
pp. 201-205 ◽  
Author(s):  
Yoshiaki Kawai ◽  
Mizuo Azukizawa ◽  
Nobuyuki Ashida ◽  
Yuichi Kumahara ◽  
Kiyoshi Miyai

Abstract. TRH (10 and 1000 μg/kg body weight) was administered ip daily to neonatal rats from day 0 to 9 after birth (Neo-TRH rats) and their pituitary-thyroid axis was examined on days 4, 10, 21 and 90. The pituitary TSH content in Neo-TRH rats was significantly smaller than in controls on days 4 and 10. The serum TSH levels in Neo-TRH rats were significantly lower than those in controls on days 4 (male group only), 10 and 21 (only 10 μg/kg group). The serum T4 levels in Neo-TRH rats were lower than in controls on day 10. The reduced pituitary TSH content and serum TSH and T4 were restored to control levels on day 90. However, the response of serum TSH to exogenous TRH (10 μg/kg/ip) was blunted in Neo-TRH rats on days 10, 21 and 90. It is concluded that repetitive administration of TRH during the neonatal period suppresses the pituitary-thyroid axis in neonatal life, even after the basal hormone level has been restored to normal.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hye-Rim Kim ◽  
Young Hwa Jung ◽  
Chang Won Choi ◽  
Hye Rim Chung ◽  
Min-Jae Kang ◽  
...  

Abstract Background Thyroid hormones are critical for growth and brain development during the newborn period and infancy. Because of delayed maturation of the hypothalamic-pituitary-thyroid axis in preterm infants, thyroid dysfunction is common, and thyroid stimulating hormone (TSH) elevation is often delayed in preterm infants. The objective of this study was to determine the incidence of thyroid dysfunction requiring levothyroxine treatment and to identify its risk factors in preterm infants. Methods A retrospective cohort study was performed on preterm infants who were born before 32 gestational weeks and admitted to a single tertiary academic center for more than 8 weeks between January 2008 and December 2014. In these infants, serial thyroid function tests (TFTs) measuring serum TSH and free thyroxine (fT4) were routinely performed at 1, 3, and 6 weeks of postnatal age. Results Of the 220 preterm infants enrolled, 180 infants underwent TFTs at 1, 3, and 6 weeks of postnatal age and were included in the study. Of the 180 infants, 35 infants (19.4%) were started on levothyroxine treatment based on the results of serial TFTs. Among the 35 infants who were treated with levothyroxine, 16 infants (45.7%) had normal results on the initial TFT. Three of these 16 infants continued to have normal results on the second TFT. Thyroid dysfunction requiring levothyroxine treatment was significantly associated with maternal pregnancy-induced hypertension (adjusted odds ratio 2.64, 95% confidence interval 1.02–6.81). Conclusions Thyroid dysfunction requiring levothyroxine treatment occurred in nearly one-fifth of preterm infants born before 32 gestational weeks. Nearly half of the preterm infants who were treated with levothyroxine had normal TSH and fT4 levels at 1 week of postnatal age. The findings of the present study suggest that serial TFTs is important to find preterm infants who require levothyroxine treatment.


Sign in / Sign up

Export Citation Format

Share Document