scholarly journals Aging is associated with changes in allopregnanolone concentrations in brain, endocrine glands and serum in male rats

1998 ◽  
pp. 316-321 ◽  
Author(s):  
F Bernardi ◽  
C Salvestroni ◽  
E Casarosa ◽  
RE Nappi ◽  
A Lanzone ◽  
...  

OBJECTIVE: Allopregnanolone is a potent neuroactive steroid hormone produced in the brain and in peripheral endocrine glands. The present study investigated possible age-related variations in allopregnanolone content in brain areas, endocrine glands and serum of male rats. DESIGN: Wistar male rats were categorized into 5 groups (6 rats in each) according to age: 6, 12, 16, 18 and 20 months respectively. METHODS: Allopregnanolone content in acidic homogenates of brain cortex, hypothalamus, pituitary, adrenals and gonads was measured by a specific radioimmunoassay. Serum allopregnanolone, corticosterone and testosterone were also assayed by radioimmunoassay. RESULTS: Brain cortex allopregnanolone content decreased significantly with age, while hypothalamic allopregnanolone content remained constant until 18 months and increased significantly at 20 months. Pituitary content showed a significant age-related reduction. Adrenal allopregnanolone content remained constant until 18 months, and was significantly higher at 20 months. Testis and serum allopregnanolone contents showed significant age-related increases. Serum testosterone levels showed an age-related decrease, while no age-related variation in serum corticosterone was found. CONCLUSIONS: The present study showed a significant impact of aging on allopregnanolone contents in brain, endocrine glands and serum, showing an age-related decrease in brain cortex and pituitary, and an age-related increase in testes, adrenals and serum.

2016 ◽  
Vol 311 (2) ◽  
pp. F312-F319 ◽  
Author(s):  
John Henry Dasinger ◽  
Suttira Intapad ◽  
Miles A. Backstrom ◽  
Anthony J. Carter ◽  
Barbara T. Alexander

Placental insufficiency programs an increase in blood pressure associated with a twofold increase in serum testosterone in male growth-restricted offspring at 4 mo of age. Population studies indicate that the inverse relationship between birth weight and blood pressure is amplified with age. Thus, we tested the hypothesis that intrauterine growth restriction programs an age-related increase in blood pressure in male offspring. Growth-restricted offspring retained a significantly higher blood pressure at 12 but not at 18 mo of age compared with age-matched controls. Blood pressure was significantly increased in control offspring at 18 mo of age relative to control counterparts at 12 mo; however, blood pressure was not increased in growth-restricted at 18 mo relative to growth-restricted counterparts at 12 mo. Serum testosterone levels were not elevated in growth-restricted offspring relative to control at 12 mo of age. Thus, male growth-restricted offspring no longer exhibited a positive association between blood pressure and testosterone at 12 mo of age. Unlike hypertension in male growth-restricted offspring at 4 mo of age, inhibition of the renin-angiotensin system with enalapril (250 mg/l for 2 wk) did not abolish the difference in blood pressure in growth-restricted offspring relative to control counterparts at 12 mo of age. Therefore, these data suggest that intrauterine growth restriction programs an accelerated age-related increase in blood pressure in growth-restricted offspring. Furthermore, this study suggests that the etiology of increased blood pressure in male growth-restricted offspring at 12 mo of age differs from that at 4 mo of age.


2004 ◽  
Vol 287 (2) ◽  
pp. R465-R471 ◽  
Author(s):  
Richard A. Galbraith ◽  
Ilean Hodgdon ◽  
Michele S. Grimm ◽  
Margaret A. Vizzard

The anorectic cobalt protoporphyrin (CoPP) is known to elicit short-term hypophagia and long-term weight loss through unknown mechanisms in the brains of experimental animals. The goal of this work was to determine 1) if the prolonged duration of action of CoPP is related to its prolonged retention within the brain; and 2) with the use of immunohistochemical detection of Fos, the product of the early-immediate gene c-fos, which cells are activated after exposure to CoPP. These studies were carried out in male rats after intracerebroventricular administration of CoPP, 0.4 μmol/kg body wt, given under light halothane anesthesia. Residence of CoPP in the brain was determined by residual counts in dissected brains of 57CoPP-injected rats. Fos immunoreactivity was mapped in coronal sections of rat brains 4–6 h after injection with CoPP. The results showed that 57CoPP was retained in the hypothalamus preferentially compared with the cortex of the brain and could be detected in the hypothalamus for in excess of 5 wk. Fos activation was increased by CoPP, detected predominantly in neuronal rather than glial cells, and was markedly more robust in the hypothalamus than in other brain areas. Thus CoPP remains in the hypothalamus for prolonged periods and activates Fos expression in the hypothalamus.


2021 ◽  
Author(s):  
Tae-Young Ha ◽  
Yu Ree Choi ◽  
Hye Rin Noh ◽  
Seon-Heui Cha ◽  
Jae-Bong Kim ◽  
...  

Abstract Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, with aging being considered the greatest risk factor for developing PD. Caveolin-1 (Cav-1) is known to participate in the aging process. Recent evidence indicates that prion-like propagation of misfolded α-synuclein (α-syn) released from neurons to neighboring neurons plays an important role in PD progression. In the present study, we demonstrated that cav-1 expression in the brain increased with age, and considerably increased in the brain of A53T α-syn transgenic mice. Cav-1 overexpression facilitated the uptake of α-syn into neurons and formation of additional Lewy body-like inclusion bodies, phosphorylation of cav-1 at tyrosine 14 was found to be crucial for this process. This study demonstrates the relationship between age and α-syn spread and will facilitate our understanding of the molecular mechanism of the cell-to-cell transmission of α-syn.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Latarsha Porcher ◽  
Sophie Bruckmeier ◽  
Steven D. Burbano ◽  
Julie E. Finnell ◽  
Nicole Gorny ◽  
...  

Abstract Background Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound—particularly for interleukin 6 (IL-6)—possibly due to differences in sex, species/strain, and/or the brain regions studied. Methods As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. Results In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. Conclusions Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1203-1203
Author(s):  
Gunter Eckert ◽  
Gunter Esselun ◽  
Elisabeth Koch ◽  
Nils Schebb

Abstract Objectives Neuroinflammation contributes to brain-aging which may be mitigated by anti-inflammatory oxylipins. Based on our previous findings that a 6% walnut-enriched diet alone, and additional physical activity (PA), enhanced cognition in 18 months old NMRI, we now investigated the effects of this diet on oxylipin- and inflammatory marker levels in liver and brain. Methods 18 months and 3 months old female NMRI mice were fed with a 6% walnut-enriched diet. Oxylipins were determined in brain and liver sections using LC-MS. Expression of IL1β gene was determined by qRT-PCR. Results The walnut diet compensates for the age related increase in IL1β gene expression in the liver of mice, whereas expression in the brain was not affected. Basal levels of oxylipins in brain and liver samples isolated from young mice were generally lower compared to aged mice. The walnut diet further increased oxylipin levels of walnut specific fatty acids in liver and brain of aged mice. Enrichment of linoleic acid (LA) and α-linolenic acid (ALA) derived oxylipin levels were quantitatively higher in the liver compared to the brain (P < 0.0001). Hydroxy-oxylipins (HO) based on fatty acid LA were significantly increased in brain (P < 0.001) and liver (P < 0.0001) compared to control mice, while ALA based HO were only detected in the brains of walnut fed mice. The walnut diet in combination with physical activity (PA) reduced ARA based oxylipin levels (P < 0.05). Across all groups, concentrations of prostanoids were higher in the brain as compared to liver (P < 0.001). In the liver, walnuts tended to decrease PGD2 and TxB2 levels while increasing 6-keto PGF1α. The latter, as well as TxB2 tended to be decreased in the brain. Other ARA based prostanoids were unaffected. Effects of PA were contrary to each other, tending to increase ARA based prostanoids in the liver while decreasing them in the brain. PA further enhanced this effect in the brain, but tended to increase the inflammatory response in the liver. Conclusions A walnut diet differentially affects the oxylipin profile of liver and brain in aged mice. Production of oxylipins based on walnut fatty acids is generally increased. Attenuation of age-related, chronic inflammation in might be one of walnut's benefits and may contribute to a healthier aging of the brain. Funding Sources Research was supported by grants from California Walnut Commission.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 153 ◽  
Author(s):  
Adam Daragó ◽  
Michał Klimczak ◽  
Joanna Stragierowicz ◽  
Olga Stasikowska-Kanicka ◽  
Anna Kilanowicz

Background: Zinc (Zn) and selenium (Se) play a well-documented role in cancer prevention (e.g., for prostate cancer), and their combined supplementation is often given as a recommended prophylactic agent. The aim of the study was to determine the influence of Zn and/or Se supplementation on the androgen receptor (AR) in the prostate lobes and the serum selected hormone concentrations; a hitherto unresearched topic. Methods: Male rats (n = 84) were administered with Zn and/or Se intragastrically for up to 90 days. The effects of administration on the tested parameters were checked after 30 and 90 days of administration and additionally, 90 days after the end of 90 day administration. Results: Zn alone leads to an increase in serum testosterone concentrations, while the protein expression of AR in both parts of the prostate increases. Combined administration of Zn and Se eliminates the effect of Zn, which may suggest that these two elements act antagonistically. Se supplementation alone results in the same level of AR protein expression in administration and 90 days after administration periods. Conclusion: This paper presents the first report of the influence of Zn and/or Se supplementation on the protein expression of AR in the prostate. Our findings seem to indicate that simultaneous supplementation of both elements may be ineffective.


2020 ◽  
Author(s):  
Lifu Deng ◽  
Mathew L Stanley ◽  
Zachary A Monge ◽  
Erik A Wing ◽  
Benjamin R Geib ◽  
...  

Abstract During demanding cognitive tasks, older adults (OAs) frequently show greater prefrontal cortex (PFC) activity than younger adults (YAs). This age-related increase in PFC activity is often associated with enhanced cognitive performance, suggesting functional compensation. However, the brain is a complex network of interconnected regions, and it is unclear how network connectivity of PFC regions differs for OAs versus YAs. To investigate this, we examined the age-related difference on the functional brain networks mediating episodic memory retrieval. YAs and OAs participants encoded and recalled visual scenes, and age-related differences in network topology during memory retrieval were investigated as a function of memory performance. We measured both changes in functional integration and reconfiguration in connectivity patterns. The study yielded three main findings. First, PFC regions were more functionally integrated with the rest of the brain network in OAs. Critically, this age-related increase in PFC integration was associated with better retrieval performance. Second, PFC regions showed stronger performance-related reconfiguration of connectivity patterns in OAs. Finally, the PFC reconfiguration increases in OAs tracked reconfiguration reductions in the medial temporal lobe (MTL)—a core episodic memory region, suggesting that PFC connectivity in OAs may be compensating for MTL deficits.


2012 ◽  
Vol 120 (3) ◽  
pp. 372-380 ◽  
Author(s):  
Yong Won Cho ◽  
Hui-Jin Song ◽  
Jae Jun Lee ◽  
Joo Hwa Lee ◽  
Hui Joong Lee ◽  
...  

1987 ◽  
Vol 116 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Dorothy I. Shulman ◽  
Margaret Sweetland ◽  
Gregory Duckett ◽  
Allen W. Root

Abstract. The GH secretory response to varying doses (15, 30, 60 μg/kg) of sc administered hGHRH 1–44 (or normal saline) was measured in vivo in 10, 20, 30, 40, 50, 60 and 130 days old pentobarbital-anaesthetized, male rats. The 10-min GH level and ΔGH were in general significantly greater in older rats (50, 60, 130 days old) than in younger rats (10, 20 days old) following all doses hGHRH. Ten-day-old animals had no significant GH response to any dose of hGHRH tested. ΔGH correlated significantly with age (r = 0.36; P < 0.0001) and Sm-C level (r = 0.29; P < 0.01) but not with serum testosterone concentrations. Monolayer pituitary cell cultures were established in rats aged 10 to 130 days and were incubated with varying concentrations of hGHRH 1–44 (0.05, 0.5, 5.0, 50 nmol/l or incubation medium). Cultures from 10- and 20-day-old animals had a greater percentage increase over basal GH secretion than other groups at all concentrations of hGHRH tested (P < 0.05). Age-related differences in the GH secretory response to hGHRH are present in male rats from 10 to 130 days. The in vitro results reported here suggest that the increase in magnitude and sensitivity of the GH response to hGHRH observed in pubertal animals in vivo under pentobarbital anaesthesia is likely due to influences above the level of the somatotrope receptor.


1985 ◽  
Vol 105 (2) ◽  
pp. 211-218 ◽  
Author(s):  
B. A. Keel ◽  
T. O. Abney

ABSTRACT The influence of age on the sensitivity of the testis to oestrogens was investigated. Intact male rats at 10, 25, 40 and 53 days of age were injected s.c. with vehicle, 5 or 50 μg oestradiol or diethylstilboestrol (DES)/100 g body wt twice daily for 2 days; the animals were killed 12 h after the last injection. Subsequently, the concentrations of testicular androgens and serum LH, prolactin, testosterone and androstanediol (5α-androstane-3α, 17β-diol) were measured. Testicular androgen production was determined in vitro in the presence or absence of human chorionic gonadotrophin (hCG) or dibutyryl cyclic AMP (dbcAMP). Androgens in the serum and testes displayed an age-related alternating pattern with androstanediol being the major androgen produced at 27 days of age. As a result of oestrogen treatment, serum LH concentrations were decreased while serum prolactin was increased. Serum testosterone was decreased by 36–55% in the 12-day-old group and further reduced by 95% of control values by day 55; serum androstanediol was less sensitive to oestrogen suppression. Testicular concentrations of both testosterone and androstanediol exhibited a marked reduction in 12-day-old animals as a result of oestrogen administration. These values were reduced by 85–95% at day 27 and remained suppressed even at 55 days. Basal production of testosterone was unaffected by oestrogen treatment in 12- and 27-day-old animals but was markedly decreased by day 42. Significant suppression of basal production of androstanediol was observed as early as day 12. Oestradiol treatment caused a significant reduction in hCG responsiveness of both androgens at days 12, 42 and 55. Oestrogen administration resulted in a significant (32–59%) decline in dbcAMP-responsive testosterone production in the 42-day group and a further suppression in the 55-day group. A marked inhibition of dbcAMP-stimulated androstanediol production was also observed in the 42- and 55-day groups. Testosterone production in response to dbcAMP was not significantly altered in the 12- and 27-day groups. With few exceptions the effects of oestradiol and DES on testicular function were similar. The data presented here suggest that the inhibitory effects of oestrogens become more pronounced as the animal approaches adulthood, that oestradiol and DES are similarly effective in regulating testicular function at all ages studied and that the production of both testosterone and androstanediol are suppressed by oestrogen administration. J. Endocr. (1985) 105, 211–218


Sign in / Sign up

Export Citation Format

Share Document