scholarly journals PAX8 and peroxisome proliferator-activated receptor gamma 1 gene expression status in benign and malignant thyroid tissues

2004 ◽  
pp. 367-374 ◽  
Author(s):  
L Lacroix ◽  
C Mian ◽  
T Barrier ◽  
M Talbot ◽  
B Caillou ◽  
...  

OBJECTIVE: Genetic alterations involving the thyroid transcription factor PAX8 and the peroxisome proliferator-activated receptor gamma 1 (PPARgamma1) genes have been described in thyroid neoplasms. We investigated in a series of thyroid samples, including 14 normal, 13 hyperfunctioning tissues, 26 follicular adenomas, 21 follicular and 41 papillary carcinomas, both the frequency of the PAX8-PPARgamma1 rearrangement and the expression of the PAX8 and PPARgamma transcripts. METHODS: Using RT-PCR followed by sequencing PCR products, PAX8-PPARgamma1 translocation was not detected in benign tissues nor in papillary carcinomas and was detected in 4 (19%) of 21 follicular carcinomas and in one (4%) of 26 follicular adenomas. RESULTS: Specific real-time quantitative RT-PCR (Q RT-PCR) methods detected high levels of PPARgamma transcripts in follicular carcinomas presenting the rearrangement. Interestingly, the level of PPARgamma transcripts was significantly decreased in papillary carcinomas in comparison with those found in benign adenomas and follicular carcinomas. Finally, PAX8 gene expression was decreased in both papillary and follicular thyroid carcinomas, and in these tumors to the same extent in the presence or absence of the rearrangement. These alterations in both PPARgamma and PAX8 gene expression may explain the poorly differentiated histotype of follicular carcinomas harboring the translocation.Immunohistochemistry showed that nuclear PPARgamma staining was weak in normal tissues, adenomas, papillary carcinomas and in some follicular carcinomas, and strong in the follicular carcinomas positive for the PAX8-PPARgamma1 translocation, but also in some follicular tumors in which no translocation could be evidenced. CONCLUSION: These observations confirm that the PAX8-PPARgamma1 translocation characterizes a subset of thyroid follicular carcinomas but is not a specific marker of carcinoma and that its frequency is lower than that initially reported. Finally, immunohistochemistry is not a reliable method for the specific detection of the translocation, that can be specifically evidenced by Q RT-PCR.

2013 ◽  
Vol 95 (2-3) ◽  
pp. 78-88 ◽  
Author(s):  
KAN HE ◽  
ZHEN WANG ◽  
QISHAN WANG ◽  
YUCHUN PAN

SummaryGene expression profiling of peroxisome-proliferator-activated receptor α (PPARα) has been used in several studies, but there were no consistent results on gene expression patterns involved in PPARα activation in genome-wide due to different sample sizes or platforms. Here, we employed two published microarray datasets both PPARα dependent in mouse liver and applied meta-analysis on them to increase the power of the identification of differentially expressed genes and significantly enriched pathways. As a result, we have improved the concordance in identifying many biological mechanisms involved in PPARα activation. We suggest that our analysis not only leads to more identified genes by combining datasets from different resources together, but also provides some novel hepatic tissue-specific marker genes related to PPARα according to our re-analysis.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Masahide Matsuyama ◽  
Rikio Yoshimura

Peroxisome proliferator-activated receptor- (PPAR)- is a ligand-activated transcriptional factor belonging to steroid receptor superfamily. PPAR- plays a role in both adipocyte differentiation and tumorigenesis. Up to date, PPAR- is expressed in various cancer tissues, and PPAR- ligand induces growth arrest of these cancer cells. In this study, we examined the expression of PPAR- in prostate cancer (PC) and testicular cancer (TC) by RT-PCR and immunohistochemistry, and we also examined the effect of PPAR- ligand in these cells by MTT assay, hoechest staining, and flow cytometry. PPAR- expression was significantly more extensive and intense in malignant tissues than in normal tissues. PPAR- ligand induced the reduction of malignant cell viability through apoptosis. These results demonstrated that the generated PPAR- in PC and TC cells might play an important role in the tumorigenesis. PPAR- may become a new target in the treatment of PC and TC.


2005 ◽  
Vol 389 (1) ◽  
pp. 47-56 ◽  
Author(s):  
M. Carmen CARMONA ◽  
Elayne HONDARES ◽  
M. Luisa RODRÍGUEZ DE LA CONCEPCIÓN ◽  
Víctor RODRÍGUEZ-SUREDA ◽  
Julia PEINADO-ONSURBE ◽  
...  

C/EBPβ (CCAAT/enhancer-binding protein β) is a transcriptional regulator of the UCP1 (uncoupling protein-1) gene, the specific marker gene of brown adipocytes that is responsible for their thermogenic capacity. To investigate the role of C/EBPβ in brown fat, we studied the C/EBPβ-null mice. When placed in the cold, C/EBPβ−/− mice did not maintain body temperature. This cold-sensitive phenotype occurred, although UCP1 and PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) gene expression was unaltered in brown fat of C/EBPβ−/− mice. The UCP1 gene promoter was repressed by the truncated inhibitory C/EBPβ isoform LIP (liver-enriched transcriptional inhibitory protein, the truncated inhibitory C/EBPβ isoform). Since C/EBPβ-null mice lack both C/EBPβ isoforms, active LAP (liver-enriched transcriptional activatory protein, the active C/EBPβ isoform) and LIP, the absence of LIP may have a stronger effect than the absence of LAP upon UCP1 gene expression. Gene expression for UCP2 and UCP3 was not impaired in all tissues analysed. In primary brown adipocytes from C/EBPβ−/− mice, induction of gene expression by noradrenaline was preserved. In contrast, the expression of genes related to lipid storage was impaired, as was the amount of triacylglycerol mobilized after acute cold exposure in brown fat from C/EBPβ−/− mice. LPL (lipoprotein lipase) activity was also impaired in brown fat, but not in other tissues of C/EBPβ−/− mice. LPL protein levels were also diminished, but this effect was independent of changes in LPL mRNA, suggesting that C/EBPβ is involved in the post-transcriptional regulation of LPL gene expression in brown fat. In summary, defective thermoregulation owing to the lack of C/EBPβ is associated with the reduced capacity to supply fatty acids as fuels to sustain brown fat thermogenesis.


2015 ◽  
Vol 36 (6) ◽  
pp. 2466-2479 ◽  
Author(s):  
XiaoLe Xu ◽  
Mengzi He ◽  
Tingting Liu ◽  
Yi Zeng ◽  
Wei Zhang

Background/Aims: salusin-ß is considered to be a potential pro-atherosclerotic factor. Regulation and function of vascular smooth muscle cells (VSMCs) are important in the progression of atherosclerosis. Peroxisome proliferator-activated receptor gamma (PPARγ) exerts a vascular protective role beyond its metabolic effects. Salusin-ß has direct effects on VSMCs. The aim of the present study was to assess the effect of salusin-ß on PPARγ gene expression in primary cultured rat VSMCs. Methods: Western blotting analysis, real-time PCR and transient transfection approach were used to determine expression of target proteins. Specific protein knockdown was performed with siRNA transfection. Cell proliferation was determined by 5-bromo-2'-deoxyuridine incorporation. The levels of inflammation indicators interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a) were determined using enzyme-linked immunosorbent assay. Results: Salusin-ß negatively regulated PPARγ gene expression at protein, mRNA and gene promoter level in VSMCs. The inhibitory effect of salusin-ß on PPARγ gene expression contributed to salusin-ß-induced VSMCs proliferation and inflammation in vitro. IγBa-NF-γB activation, but not NF-γB p50 or p65, mediated the salusin-ß-induced inhibition of PPARγ gene expression. Salusin-ß induced nuclear translocation of histone deacetylase 3 (HDAC3). HDAC3 siRNA prevented salusin-ß-induced PPARγ reduction. Nuclear translocation of HDAC3 in response to salusin-ß was significantly reversed by an IγBa inhibitor BAY 11-7085. Furthermore, IγBa-HDAC3 complex was present in the cytosol of VSMCs but interrupted after salusin-ß treatment. Conclusion: IγBa-HDAC3 pathway may contribute to salusin-ß-induced inhibition of PPARγ gene expression in VSMCs.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Levente Szalárdy ◽  
Dénes Zádori ◽  
Péter Klivényi ◽  
József Toldi ◽  
László Vécsei

Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Huntington’s diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson’s and Huntington’s disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.


2009 ◽  
Vol 284 (24) ◽  
pp. 16541-16552 ◽  
Author(s):  
Üzen Savas ◽  
Daniel E. W. Machemer ◽  
Mei-Hui Hsu ◽  
Pryce Gaynor ◽  
Jerome M. Lasker ◽  
...  

CYP4A11 transgenic mice (CYP4A11 Tg) were generated to examine in vivo regulation of the human CYP4A11 gene. Expression of CYP4A11 in mice yields liver and kidney P450 4A11 levels similar to those found in the corresponding human tissues and leads to an increased microsomal capacity for ω-hydroxylation of lauric acid. Fasted CYP4A11 Tg mice exhibit 2–3-fold increases in hepatic CYP4A11 mRNA and protein, and this response is absent in peroxisome proliferator-activated receptor α (PPARα) null mice. Dietary administration of either of the PPARα agonists, fenofibrate or clofibric acid, increases hepatic and renal CYP4A11 levels by 2–3-fold, and these responses were also abrogated in PPARα null mice. Basal liver CYP4A11 levels are reduced differentially in PPARα−/− females (>95%) and males (<50%) compared with PPARα−/+ mice. Quantitative and temporal differences in growth hormone secretion are known to alter hepatic lipid metabolism and to underlie sexually dimorphic gene expression, respectively. Continuous infusion of low levels of growth hormone reduced CYP4A11 expression by 50% in PPARα-proficient male and female transgenic mice. A larger decrease was observed for the expression of CYP4A11 in PPARα−/− CYP4A11 Tg male mice to levels similar to that of female PPARα-deficient mice. These results suggest that PPARα contributes to the maintenance of basal CYP4A11 expression and mediates CYP4A11 induction in response to fibrates or fasting. In contrast, increased exposure to growth hormone down-regulates CYP4A11 expression in liver.


Sign in / Sign up

Export Citation Format

Share Document