scholarly journals Involvement of the gp130 cytokine transducer in MtT/S pituitary somatotroph tumour development in an autocrine-paracrine model

2004 ◽  
pp. 595-604 ◽  
Author(s):  
M Graciarena ◽  
A Carbia-Nagashima ◽  
C Onofri ◽  
C Perez-Castro ◽  
D Giacomini ◽  
...  

OBJECTIVE: gp130 cytokines are placed as auto-paracrine regulators of pituitary function, since they, as well as their receptors, have been shown to be expressed in and to act in normal and tumoral anterior pituitary cells. The objective of this work was to study their involvement in a model that shows the interaction between different cellular types that participate in a tumorigenic process. DESIGN: The dependence of a pituitary somatotrophic cell line (MtT/S) on a gp130 cytokine-producing folliculostellate (FS) cell line (TtT/GF) for tumorigenesis in vivo has been described. In order to study the participation of gp130 cytokines in the auto-paracrine stimulation of MtT/S growth, we generated MtT/S gp130 sense (gp130-S) and gp130 antisense (gp130-AS) clones stably transfected with pcDNA3/gp130 sense and pcDNA3/gp130 antisense vectors respectively. METHODS AND RESULTS: Functional characterization studies revealed that gp130-AS clones have an inhibited gp130 signalling, and proliferation studies showed that they have an impaired response to gp130 cytokines but respond normally to other independent stimuli. When injected into nude mice, MtT/S clones respond differently depending on cell number; at high concentrations MtT/S clones alone generated tumours equivalent in size to tumours derived from MtT/S plus TtT/GF cells. At low concentrations, MtT/S sense and control clones generated tumours of smaller size than tumours derived from these same clones plus TtT/GF cells, showing a dependence on FS cells. In both cases MtT/S gp130-AS clones had impaired tumour development. Furthermore, vessel density was significantly lower in tumours derived from gp130-AS plus TtT/GF cells. CONCLUSIONS: This study underlines the importance of gp130 cytokines in proliferation and establishes its role in auto-paracrine pituitary growth regulation.

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Jared S. Stine ◽  
Bryan J. Harper ◽  
Cathryn G. Conner ◽  
Orlin D. Velev ◽  
Stacey L. Harper

Lignin is the second most abundant biopolymer on Earth after cellulose. Since lignin breaks down in the environment naturally, lignin nanoparticles may serve as biodegradable carriers of biocidal actives with minimal environmental footprint compared to conventional antimicrobial formulations. Here, a lignin nanoparticle (LNP) coated with chitosan was engineered. Previous studies show both lignin and chitosan to exhibit antimicrobial properties. Another study showed that adding a chitosan coating can improve the adsorption of LNPs to biological samples by electrostatic adherence to oppositely charged surfaces. Our objective was to determine if these engineered particles would elicit toxicological responses, utilizing embryonic zebrafish toxicity assays. Zebrafish were exposed to nanoparticles with an intact chorionic membrane and with the chorion enzymatically removed to allow for direct contact of particles with the developing embryo. Both mortality and sublethal endpoints were analyzed. Mortality rates were significantly greater for chitosan-coated LNPs (Ch-LNPs) compared to plain LNPs and control groups. Significant sublethal endpoints were observed in groups exposed to Ch-LNPs with chorionic membranes intact. Our study indicated that engineered Ch-LNP formulations at high concentrations were more toxic than plain LNPs. Further study is warranted to fully understand the mechanisms of Ch-LNP toxicity.


2000 ◽  
Vol 78 (10) ◽  
pp. 829-847 ◽  
Author(s):  
Margaret C Cam ◽  
Roger W Brownsey ◽  
John H McNeill

The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.Key words: vanadium, insulin-mimetic, insulin-like, insulin-enhancing.


2015 ◽  
pp. MCB.00074-15 ◽  
Author(s):  
Gaella Boulanger ◽  
Marie Cibois ◽  
Justine Viet ◽  
Alexis Fostier ◽  
Stéphane Deschamps ◽  
...  

CELF1 is a multifunctional RNA-binding protein that controls several aspects of RNA fate. The targeted disruption of theCelf1gene in mice causes male infertility due to impaired spermiogenesis, the post-meiotic differentiation of male gametes. Here, we investigated the molecular reasons that underlie this testicular phenotype. By measuring sex hormone levels, we detected low concentrations of testosterone inCelf1-null mice. We investigated the effect ofCelf1disruption on the expression levels of steroidogenic enzyme genes, and we observed thatCyp19a1was upregulated.Cyp19a1encodes aromatase, which transforms testosterone into estradiol. Administration of testosterone or the aromatase inhibitor Letrozole partly rescued the spermiogenesis defects, indicating that a lack of testosterone associated with excessive aromatase contributes to the testicular phenotype. In vivo and in vitro interaction assays demonstrated that CELF1 binds toCyp19a1mRNA, and reporter assays supported the conclusion that CELF1 directly repressesCyp19a1translation. We conclude that CELF1 downregulatesCyp19a1/Aromatasepost-transcriptionally to achieve high concentrations of testosterone compatible with spermiogenesis completion. We discuss the implications of these findings with respect to reproductive defects in men, including patients suffering from isolated hypogonadotropic hypogonadism and myotonic dystrophy type I.


2021 ◽  
Vol 18 ◽  
Author(s):  
Danielle R. Gonçalves ◽  
Thais B. Cesar ◽  
John A. Manthey ◽  
Paulo I. Costa

Background: Citrus polymethoxylated flavones (PMFs) reduce the synthesis of liver lipoproteins in animal and in vitro cell assays, but few studies have evaluated the direct effects of their metabolites on this highly regulated process. Objective: To investigate the effects of representative metabolites of PMF on the secretion of liver lipoproteins using the mammalian cell Huh7.5. Method: In this study, the influences of three PMFs and five previously isolated PMF metabolites on hepatic apoB-100 secretion and microsomal transfer protein (MTP) activity were evaluated. Tangeretin (TAN), nobiletin (NOB) and 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF), and their glucuronides (TAN-Gluc, NOB-Gluc and HMF-Gluc) and oxidatively demethylated metabolites (TAN-OH, NOB-OH, HMF-OH) were incubated with Huh7.5 cells to measure their inhibitory effects on lipid synthesis. Results: The results showed that TAN, HMF and TAN-OH reduced the secretion of apoB-100 in a dose-dependent manner, while NOB and the other tested metabolites showed no inhibition. MTP activity in the Huh7.5 cells was significantly reduced in the presence of low concentrations of TAN, and in high concentrations of NOB-OH. This study also showed that PMFs and PMF metabolites produced a wide range of effects on apoB-100 secretion and MTP activity. Conclusion: The results suggest that while PMFs and their metabolites control dyslipidemia in vivo, the inhibition of MTP activity cannot be the only pathway influenced by these compounds.


Blood ◽  
2011 ◽  
Vol 117 (1) ◽  
pp. 259-267 ◽  
Author(s):  
Peter Allacher ◽  
Christina K. Baumgartner ◽  
Aniko G. Pordes ◽  
Rafi U. Ahmad ◽  
Hans Peter Schwarz ◽  
...  

Abstract Factor VIII (FVIII)–specific memory B cells are essential components for regulating anamnestic antibody responses against FVIII in hemophilia A with FVIII inhibitors. We asked how stimulation and inhibition of FVIII-specific memory B cells by low and high concentrations of FVIII, respectively, are affected by concurrent activation of the innate immune system. Using CD138− spleen cells from hemophilic mice treated with FVIII to study restimulation and differentiation of memory B cells in vitro, we tested modulating activities of agonists for Toll-like receptors (TLRs) 2, 3, 4, 5, 7, and 9. Ligands for TLR7 and 9 were most effective. They not only amplified FVIII-specific memory responses in the presence of stimulating concentrations of FVIII, but also countered inhibition in the presence of inhibitory concentrations of FVIII. Notably, CpG oligodeoxynucleotide (CpG-ODN), a ligand for TLR9, expressed biphasic effects. It amplified memory responses at low concentrations and inhibited memory responses at high concentrations, both in vitro and in vivo. Both stimulatory and inhibitory activities of CpG-ODN resulted from specific interactions with TLR9. Despite their strong immunomodulatory effects in the presence of FVIII, ligands for TLR induced negligible restimulation in the absence of FVIII in vitro and no restimulation in the absence of FVIII in vivo.


1996 ◽  
Vol 184 (2) ◽  
pp. 325-336 ◽  
Author(s):  
G Leclercq ◽  
V Debacker ◽  
M de Smedt ◽  
J Plum

Bipotential T/natural killer (NK) progenitor cells are destined to differentiate mainly into T cell receptor (TCR) alpha beta and TCR gamma delta cells in a thymic microenvironment, whereas extrathymically they selectively develop into NK cells. The exact environmental conditions that are required for differentiation into these three leukocyte populations are largely unknown. In this report, we have investigated and compared the effect of interleukin (IL)-15 and IL-2 in this process. The IL-15 receptor is composed of the gamma and beta chains of the IL-2 receptor (IL-2R gamma and IL-2R beta) and of a specific alpha chain (IL-15R alpha). Here, it is shown that IL-15 mRNA is mainly expressed in thymic epithelial stromal cells, whereas IL-2 mRNA is exclusively expressed in thymocytes. IL-2R beta-expressing cells were present in the fetal thymus with a CD25-CD44+Fc gamma R+HSA-/low TCR- phenotype, which is characteristic of progenitor cells. These cells also expressed IL-15R alpha messenger RNA. Sorted IL-2R beta + TCR- cells differentiated into TCR alpha beta and TCR gamma delta cells after transfer to alymphoid thymic lobes, whereas culture of the same sorted cells in cell suspension in the presence of IL-15 resulted in the generation of functional NK cells. This shows that IL-2R beta +TCR- cells of the fetal thymus contain bipotential T/NK progenitors. Addition of low concentrations of IL-15 to fetal thymic organ culture (FTOC) resulted in an increase of all T cell subpopulations. The largest expansion occurred in the TCR gamma delta compartment. In contrast, low concentrations of IL-2 did not result in a higher total cell number and did not induce outgrowth of TCR gamma delta cells. High concentrations of IL-15 blocked TCR alpha beta development and shifted differentiation towards NK cells. Differentiation towards TCR gamma delta cells still proceeded. High concentrations of IL-2 similarly induced development into NK cells, but the cell number was fourfold lower than in IL-15 cultures. Importantly, blocking of IL-2R alpha in IL-2-treated FTOC resulted in a drastic increase in cell number, indicating that IL-2R alpha negatively regulates cell expansion. Collectively, these experiments provide direct evidence that IL-15 and IL-2 differentially affect the differentiation of bipotential T/NK progenitors.


2006 ◽  
Vol 20 (7) ◽  
pp. 1633-1643 ◽  
Author(s):  
Aaron Cranston ◽  
Cristiana Carniti ◽  
Sam Martin ◽  
Piera Mondellini ◽  
Yvette Hooks ◽  
...  

Abstract We report the finding of a novel missense mutation at codon 833 in the tyrosine kinase of the RET proto-oncogene in a patient with a carcinoma of the thyroid. In vitro experiments demonstrate that the R833C mutation induces transformed foci only when present in the long 3′ splice isoform and, in keeping with a model in which the receptor has to dimerize to be completely activated, glial cell line-derived neurotrophic factor stimulation leads the RETR833C receptor to a higher level of activation. Tyrosine kinase assays show that the RETR833C long isoform has weak intrinsic kinase activity and phosphorylation of an exogenous substrate is not elevated even in the presence of glial cell line-derived neurotrophic factor. Furthermore, the R833C mutation is capable of sustaining the transformed phenotype in vivo but does not confer upon the transformed cells the ability to degrade the basement membrane in a manner analogous to metastasis. Our functional characterization of the R833C substitution suggests that, like the V804M and S891A mutations, this tyrosine kinase mutation confers a weak activating potential upon RET. This is the first report demonstrating that the introduction of an intracellular cysteine can activate RET. However, this does not occur via dimerization in a manner analogous to the extracellular cysteine mutants.


2020 ◽  
Vol 71 (3) ◽  
pp. 2315
Author(s):  
S. SIGÜENZA ◽  
I.S. ÁLVAREZ ◽  
E. MATILLA

Vitrification is the best method for embryo cryopreservation although it increases endogenous reactive oxygen species (ROS) production. N-acetylcysteine (NAC) a free radical scavenger may be used for reducing ROS toxic effects. The aim of the present study is to investigate potential beneficial effects of NAC on the developmental embryo competence applying different culture conditions in vitrified-warmed 2-cell embryos derived in vivo or in vitro. Thus, 2-cell embryos were vitrified or cultured fresh in presence or absence of 1 mM of NAC during: a) the entire embryo culture, b) for 24 hours with NAC at days 1.5 (G1) or 2.5 (G2) and returned to basal embryo culture (KSOM) or c) cultured in the presence of NAC for 12 hours at day 3.5 (G3). Despite NAC addition to fresh or vitrified embryos produced in vivo or by IVF, blastocyst rates remained unchanged. In vitrified-warmed IU or IVF-derived embryos, total cell number varied when NAC was added at day 1.5 although differences were not significant (60.1 ± 1.9 vs. 59.4 ± 1.3 for IU G1 and control respectively; and 59.3 ± 1.6 and 52.6 ± 3.0 IVF G1 and control respectively; mean cell number ± SEM, p > 0.05). It seems that the embryo culture medium supplementation with 1 mM of NAC in the first day after vitrification of development improves blastocyst quality of murine embryos and does not exert any beneficial effect at oyher culture points.


1996 ◽  
Vol 134 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Masaaki Yamaguchi ◽  
Akira Miyake

Yamaguchi M. Miyake A. Regulation of mouse placental lactogen secretion by factors secreted from the pituitary in vitro. Eur J Endocrinol 1996;134:123–7. ISSN 0804–4643 The effect of factors secreted from the pituitary on mouse placental lactogen I (mPL-I) and mPL-II secretion in vitro was examined. Co-culture of mouse placental cells from day 7 of pregnancy with the pituitary cells of the mother significantly stimulated mPL-I secretion but did not regulate mPL-II secretion. The effect on mPL-I secretion was dependent on the number of pituitary cells. The conditioned medium of pituitary cells also significantly stimulated mPL-I secretion but did not regulate mPL-II secretion. The stimulatory effect of mPL-I secretion was dependent on the volume of the conditioned medium. The number of cells containing mPL-I assessed by immunocytochemistry was increased by the co-culture in a cell number-dependent manner. Northern blot analysis for mPL-I indicated that treatment of placental cells with the pituitary-conditioned medium results in an increase of mPL-I gene expression. These findings suggest that factors secreted from the pituitary directly regulate mPL-I secretion, but not mPL-II secretion, before midpregnancy in vivo. Masaaki Yamaguchi, Department of Obstetrics and Gynecology. Osaka University Medical School, 2-2 Yamadaoka, Suita. Osaka 565, Japan


Reproduction ◽  
2009 ◽  
Vol 138 (3) ◽  
pp. 507-517 ◽  
Author(s):  
M Clemente ◽  
J de La Fuente ◽  
T Fair ◽  
A Al Naib ◽  
A Gutierrez-Adan ◽  
...  

The steroid hormone progesterone (P4) plays a key role in the reproductive events associated with pregnancy establishment and maintenance. High concentrations of circulating P4 in the immediate post-conception period have been associated with an advancement of conceptus elongation, an associated increase in interferon-τ production and higher pregnancy rates in cattle. Using in vitro and in vivo models and ∼8500 bovine oocytes across six experiments, the aim of this study was to establish the route through which P4 affects bovine embryo development in vitro and in vivo. mRNA for P4 receptors was present at all stages of embryo development raising the possibility of a direct effect of P4 on the embryo. Exposure to P4 in vitro in the absence or presence of oviduct epithelial cells did not affect the proportion of embryos developing to the blastocyst stage, blastocyst cell number or the relative abundance of selected transcripts in the blastocyst. Furthermore, exposure to P4 in vitro did not affect post-hatching elongation of the embryo following transfer to synchronized recipients and recovery on Day 14. By contrast, transfer of in vitro derived blastocysts to a uterine environment previously primed by elevated P4 resulted in a fourfold increase in conceptus length on Day 14. These data provide clear evidence to support the hypothesis that P4-induced changes in the uterine environment are responsible for the advancement in conceptus elongation reported previously in cattle and that, interestingly, the embryo does not need to be present during the period of high P4 in order to exhibit advanced elongation.


Sign in / Sign up

Export Citation Format

Share Document