scholarly journals Hooked on zebrafish: insights into development and cancer of endocrine tissues

2011 ◽  
Vol 18 (5) ◽  
pp. R149-R164 ◽  
Author(s):  
Caitlin Bourque ◽  
Yariv Houvras

Zebrafish is emerging as a unique model organism for studying cancer genetics and biology. For several decades zebrafish have been used to study vertebrate development, where they have made important contributions to understanding the specification and differentiation programs in many tissues. Recently, zebrafish studies have led to important insights into thyroid development, and have been used to model endocrine cancer. Zebrafish possess a unique set of attributes that make them amenable to forward and reverse genetic approaches. Zebrafish embryos develop rapidly and can be used to study specific cell lineages or the effects of chemicals on pathways or tissue development. In this review, we highlight the structure and function of endocrine organs in zebrafish and outline the major achievements in modeling cancer. Our goal is to familiarize readers with the zebrafish as a genetic model system and propose opportunities for endocrine cancer research in zebrafish.

2019 ◽  
Author(s):  
Bethany A. Stahl ◽  
Robert Peuß ◽  
Brittnee McDole ◽  
Alexander Kenzior ◽  
James B. Jaggard ◽  
...  

AbstractAstyanax mexicanus is a well-established and widely used fish model system for evolutionary and developmental biology research. These fish exist as surface forms that inhabit rivers and 30 different populations of cavefish. The establishment of A. mexicanus as an emergent model organism for understanding the evolutionary basis of development and behavior has been accelerated by an increasing availability of genomic approaches to identify genotype-phenotype associations. Despite important progress in the deployment of new technologies, deep mechanistic insights into A. mexicanus evolution and development have been limited by a lack of transgenic lines commonly used in genetic model systems. Here, we expand the toolkit of transgenesis by characterizing two novel stable transgenic lines that were generated using the highly efficient Tol2 system, commonly used to generate transgenic zebrafish. A stable transgenic line consisting of the zebrafish ubiquitin promoter fused to eGFP expressed eGFP ubiquitously throughout development in a surface population of Astyanax. To define specific cell-types, we injected fish with a Cntnap2-mCherry construct that labels lateral line mechanosensory neurons in zebrafish. Strikingly, both constructs appear to label the predicted cell types, suggesting many genetic tools and defined promoter regions in zebrafish are directly transferrable to cavefish. The lines provide proof-of-principle for the application of Tol2 transgenic technology in A. mexicanus. Expansion on these initial transgenic lines will provide a platform to address broadly important problems in the quest to bridge the genotype to phenotype gap.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amitava Basu ◽  
Vijay K. Tiwari

AbstractEpigenetic mechanisms are known to define cell-type identity and function. Hence, reprogramming of one cell type into another essentially requires a rewiring of the underlying epigenome. Cellular reprogramming can convert somatic cells to induced pluripotent stem cells (iPSCs) that can be directed to differentiate to specific cell types. Trans-differentiation or direct reprogramming, on the other hand, involves the direct conversion of one cell type into another. In this review, we highlight how gene regulatory mechanisms identified to be critical for developmental processes were successfully used for cellular reprogramming of various cell types. We also discuss how the therapeutic use of the reprogrammed cells is beginning to revolutionize the field of regenerative medicine particularly in the repair and regeneration of damaged tissue and organs arising from pathological conditions or accidents. Lastly, we highlight some key challenges hindering the application of cellular reprogramming for therapeutic purposes.


2015 ◽  
Vol 3 (41) ◽  
pp. 8032-8058 ◽  
Author(s):  
Akon Higuchi ◽  
Qing-Dong Ling ◽  
S. Suresh Kumar ◽  
Yung Chang ◽  
Abdullah A. Alarfaj ◽  
...  

Differentiation methods of hPSCs into specific cell lineages. Differentiation of hPSCsviaEB formation (types AB, A–D) or without EB formation (types E–H).


EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sonja Fritzsche ◽  
Vera S. Hunnekuhl

Abstract Background The insect neuroendocrine system acts in the regulation of physiology, development and growth. Molecular evolution of this system hence has the potential to allow for major biological differences between insect groups. Two prohormone convertases, PC1/3 and PC2, are found in animals and both function in the processing of neuropeptide precursors in the vertebrate neurosecretory pathway. Whereas PC2-function is conserved between the fly Drosophila and vertebrates, ancestral PC1/3 was lost in the fly lineage and has not been functionally studied in any protostome. Results In order to understand its original functions and the changes accompanying the gene loss in the fly, we investigated PC1/3 and PC2 expression and function in the beetle Tribolium castaneum. We found that PC2 is broadly expressed in the nervous system, whereas surprisingly, PC1/3 expression is restricted to specific cell groups in the posterior brain and suboesophageal ganglion. Both proteases have parallel but non-redundant functions in adult beetles’ viability and fertility. Female infertility following RNAi is caused by a failure to deposit sufficient yolk to the developing oocytes. Larval RNAi against PC2 produced moulting defects where the larvae were not able to shed their old cuticle. This ecdysis phenotype was also observed in a small subset of PC1/3 knockdown larvae and was strongest in a double knockdown. Unexpectedly, most PC1/3-RNAi larvae showed strongly reduced growth, but went through larval moults despite minimal to zero weight gain. Conclusions The cell type-specific expression of PC1/3 and its essential requirement for larval growth highlight the important role of this gene within the insect neuroendocrine system. Genomic conservation in most insect groups suggests that it has a comparable individual function in other insects as well, which has been replaced by alternative mechanisms in flies.


2017 ◽  
Vol 24 (10) ◽  
pp. T147-T159 ◽  
Author(s):  
Zijie Feng ◽  
Jian Ma ◽  
Xianxin Hua

There is a trend of increasing prevalence of neuroendocrine tumors (NETs), and the inherited multiple endocrine neoplasia type 1 (MEN1) syndrome serves as a genetic model to investigate how NETs develop and the underlying mechanisms. Menin, encoded by the MEN1 gene, at least partly acts as a scaffold protein by interacting with multiple partners to regulate cellular homeostasis of various endocrine organs. Menin has multiple functions including regulation of several important signaling pathways by controlling gene transcription. Here, we focus on reviewing the recent progress in elucidating the key biochemical role of menin in epigenetic regulation of gene transcription and cell signaling, as well as posttranslational regulation of menin itself. In particular, we will review the progress in studying structural and functional interactions of menin with various histone modifiers and transcription factors such as MLL, PRMT5, SUV39H1 and other transcription factors including c-Myb and JunD. Moreover, the role of menin in regulating cell signaling pathways such as TGF-beta, Wnt and Hedgehog, as well as miRNA biogenesis and processing will be described. Further, the regulation of the MEN1 gene transcription, posttranslational modifications and stability of menin protein will be reviewed. These various modes of regulation by menin as well as regulation of menin by various biological factors broaden the view regarding how menin controls various biological processes in neuroendocrine organ homeostasis.


Science ◽  
2018 ◽  
Vol 361 (6409) ◽  
pp. 1341-1345 ◽  
Author(s):  
Eileen E. M. Furlong ◽  
Michael Levine

Developmental enhancers mediate on/off patterns of gene expression in specific cell types at particular stages during metazoan embryogenesis. They typically integrate multiple signals and regulatory determinants to achieve precise spatiotemporal expression. Such enhancers can map quite far—one megabase or more—from the genes they regulate. How remote enhancers relay regulatory information to their target promoters is one of the central mysteries of genome organization and function. A variety of contrasting mechanisms have been proposed over the years, including enhancer tracking, linking, looping, and mobilization to transcription factories. We argue that extreme versions of these mechanisms cannot account for the transcriptional dynamics and precision seen in living cells, tissues, and embryos. We describe emerging evidence for dynamic three-dimensional hubs that combine different elements of the classical models.


2019 ◽  
Vol 20 (9) ◽  
pp. 942-952 ◽  
Author(s):  
Molly Duman-Scheel

The broad application of RNA interference for disease prevention is dependent upon the production of dsRNA in an economically feasible, scalable, and sustainable fashion, as well as the identification of safe and effective methods for RNA delivery. Current research has sparked interest in the use of Saccharomyces cerevisiae for these applications. This review examines the potential for commercial development of yeast interfering RNA expression and delivery systems. S. cerevisiae is a genetic model organism that lacks a functional RNA interference system, which may make it an ideal system for expression and accumulation of high levels of recombinant interfering RNA. Moreover, recent studies in a variety of eukaryotic species suggest that this microbe may be an excellent and safe system for interfering RNA delivery. Key areas for further research and development include optimization of interfering RNA expression in S. cerevisiae, industrial-sized scaling of recombinant yeast cultures in which interfering RNA molecules are expressed, the development of methods for largescale drying of yeast that preserve interfering RNA integrity, and identification of encapsulating agents that promote yeast stability in various environmental conditions. The genetic tractability of S. cerevisiae and a long history of using this microbe in both the food and pharmaceutical industry will facilitate further development of this promising new technology, which has many potential applications of medical importance.


2021 ◽  
Author(s):  
Elin Einarsson ◽  
Imen Lassadi ◽  
Jana Zielinski ◽  
Qingtian Guan ◽  
Tobias Wyler ◽  
...  

The phylum Perkinsozoa is an aquatic parasite lineage that has devastating effects on commercial and natural mollusc populations, and also comprises parasites of algae, fish and amphibians. They are related to, and share much of their biology with, dinoflagellates and apicomplexans and thus offer excellent genetic models for both parasitological and evolutionary studies. Genetic transformation has been previously achieved for select Perkinsus spp. but with few tools for transgene expression and only limited selection efficacy. We thus sought to expand the power of experimental genetic tools for Perkinsus marinus — the principal perkinsozoan model to date. We constructed a modular plasmid assembly system that enables expression of multiple genes simultaneously. We developed an efficient selection system for three drugs, puromycin, bleomycin and blasticidin, that achieves transformed cell populations in as little as three weeks. We developed and quantified eleven new promoters of variable expression strength. Furthermore, we identified that genomic integration of transgenes is predominantly via non-homologous recombination and often involves transgene fragmentation including deletion of some introduced elements. To counter these dynamic processes, we show that bi-cistronic transcripts using the viral 2A peptides can couple selection systems to the maintenance of the expression of a transgene of interest. Collectively, these new tools and insights provide new capacity to efficiently genetically modify and study Perkinsus as an aquatic parasite and evolutionary model.


Author(s):  
Sanjib Guha ◽  
Sarah Fischer ◽  
Gail VW Johnson ◽  
Keith Nehrke

ABSTRACTBackgroundA defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear.MethodsHuman 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E and T231A, to mimic phosphorylation and phospho-ablation of a commonly observed pathological epitope, respectively, and K274/281Q, to mimic disease-associated lysine acetylation. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age, and genetically-encoded fluorescent biosensors were used to measure the morphological dynamics and turnover of touch neuron mitochondria.ResultsUnlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage mitophagy in response to mitochondrial stress.ConclusionsLimiting the expression of tau results in a genetic model where pathological modifications and age result in evolving phenotypes, which may more closely resemble the normal progression of AD. The finding that disease-associated PTMs suppress compensatory responses to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Prashant Rajbhandari ◽  
Douglas Arneson ◽  
Sydney K Hart ◽  
In Sook Ahn ◽  
Graciel Diamante ◽  
...  

Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.


Sign in / Sign up

Export Citation Format

Share Document