scholarly journals Hyperglycaemia-induced chemoresistance in breast cancer cells: role of the estrogen receptor

2015 ◽  
Vol 23 (2) ◽  
pp. 125-134 ◽  
Author(s):  
L Zeng ◽  
H A Zielinska ◽  
A Arshad ◽  
J P Shield ◽  
A Bahl ◽  
...  

Breast cancer patients with diabetes respond less well to chemotherapy; in keeping with this we determined previously that hyperglycaemia-induced chemoresistance in estrogen receptor (ERα) positive breast cancer cells and showed that this was mediated by fatty acid synthase (FASN). More recent evidence suggests that the effect of metabolic syndrome and diabetes is not the same for all subtypes of breast cancer with inferior disease-free survival and worse overall survival only found in women with ERα positive breast cancer and not for other subtypes. Here we examined the impact of hyperglycaemia on ERα negative breast cancer cells and further investigated the mechanism underlying chemoresistance in ERα with a view to identifying strategies to alleviate hyperglycaemia-induced chemoresistance. We found that hyperglycaemia-induced chemoresistance was only observed in ERα breast cancer cells and was dependent upon the expression of ERα as chemoresistance was negated when the ERα was silenced. Hyperglycaemia-induced an increase in activation and nuclear localisation of the ERα that was downstream of FASN and dependent on the activation of MAPK. We found that fulvestrant successfully negated the hyperglycaemia-induced chemoresistance, whereas tamoxifen had no effect. In summary our data suggests that the ERα may be a predictive marker of poor response to chemotherapy in breast cancer patients with diabetes. It further indicates that anti-estrogens could be an effective adjuvant to chemotherapy in such patients and indicates the importance for the personalised management of breast cancer patients with diabetes highlighting the need for clinical trials of tailored chemotherapy for diabetic patients diagnosed with ERα positive breast cancers.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3543-3543 ◽  
Author(s):  
Jason Brown ◽  
Palak Shah ◽  
Josh Vo ◽  
Lanbo Xiao ◽  
Yashar Niknafs ◽  
...  

3543 Background: Non-invasive testing in plasma using RNA biomarkers has been limited by exoribonuclease-mediated degradation of RNA. Circular RNA (circRNA) are covalently closed RNA structures that resist this degradation due to their circular structure. Therefore circRNA are more stable than their linear counterparts. CircRNA are formed by alternative backsplicing of the 3’ end of a downstream exon to the 5’ end of an upstream exon. Here, we propose a novel method for non-invasive identification of circRNA and demonstrate circularized forms of several lineage and cancer specific targets for estrogen receptor-positive breast cancer. Methods: Capture RNA sequencing on cancer tissue was previously performed to determine the relative expression of potential circRNA isoforms in breast cancer patients. These isoforms as well as those predicted by intron length were screened using a quantitative PCR-based assay on ER-positive breast cancer cells. RNA extracted from breast cancer cells are exposed to ribonuclease R to demonstrate stability of circRNA. CircRNA derived from targets with known universal expression are used as positive controls as well as for analysis on plasma. Results: We identify the circRNA isoforms with highest expression for five genes, including ESR1, that are differentially expressed in ER-positive breast cancer compared to other cancers and normal breast tissue. We determine that the circRNA corresponding to all five targets is specifically expressed in breast cancer cell lines with at least 1000-fold higher expression than in non-ER positive breast cancer cell lines. We demonstrate that the highest expressing circRNA isoforms are resistant to degradation by ribonuclease R, whereas corresponding linear mRNA is susceptible. We also demonstrate the presence and stability of positive control circRNA in plasma from patients without cancer. Conclusions: CircRNA are promising biomarkers for early non-invasive detection of cancer due to their stability in plasma. This assay reliably detects ER-positive breast cancer specific circRNA, and exoribonuclease resistance has been validated. Application of this diagnostic assay to plasma from breast cancer patients is underway.


2020 ◽  
Author(s):  
Carolina Gemma ◽  
Anup K Singh ◽  
Antonino Belfiore ◽  
Chun-Fui Lai ◽  
Manikandan Periyasamy ◽  
...  

AbstractEndocrine therapies are standard-of-care treatments for estrogen receptor (ER) positive breast cancer. However, patients with ER+ breast cancer develop resistance to these therapies and most relapsed patients die with endocrine-resistant metastatic disease. Here we show that resistance to the ER degrader, fulvestrant, is accompanied by epigenetic activation of the transcriptional co-activator VGLL1. Rewiring of the epigenome in therapy resistant cells also results in increased binding of the transcription factor TEAD4. Through interaction with TEAD4, VGLL1 induces the expression of genes implicated in cell proliferation in the resistant cells. We demonstrate that VGLL1 is necessary for the growth of fulvestrant-resistant breast cancer cells. Pharmacological disruption of VGLL1/TEAD4 interaction blocked growth of fulvestrant-resistant cells, accompanied by inhibition of VGLL1/TEAD transcriptional programmes. Furthermore, we identify EGFR as an important downstream VGLL1 target, whereby VGLL1-directed EGFR upregulation sensitises fulvestrant-resistant breast cancer cells to EGFR inhibitors. Taken together, our findings identify VGLL1 as a key transcriptional driver in endocrine-resistant breast cancer and identify new therapeutic approaches for advanced breast cancer patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo-Wei Wang ◽  
Chih-Hao Huang ◽  
Liang-Chih Liu ◽  
Fang-Ju Cheng ◽  
Ya-Ling Wei ◽  
...  

The proviral integration site for moloney murine leukemia virus 1 (Pim1) is a serine/threonine kinase and able to promote cell proliferation, survival and drug resistance. Overexpression of Pim1 has been observed in many cancer types and is associated with the poor prognosis of breast cancer. However, it remains unclear whether Pim1 kinase is a potential therapeutic target for breast cancer patients. In this study, we found that Pim1 expression was strongly associated with HER2 expression and that HER2-overexpressing breast cancer cells were more sensitive to Pim1 inhibitor-induced inhibitions of cell viability and metastatic ability. Mechanistically, Pim1 inhibitor suppressed the expression of HER2 at least in part through transcriptional level. More importantly, Pim1 inhibitor overcame the resistance of breast cancer cells to HER2 tyrosine kinase inhibitor lapatinib. In summary, downregulation of HER2 by targeting Pim1 may be a promising and effective therapeutic approach not only for anti-cancer growth but also for circumventing lapatinib resistance in HER2-positive breast cancer patients.


2019 ◽  
Vol 20 (7) ◽  
pp. 1673 ◽  
Author(s):  
Terézia Kisková ◽  
Felicitas Mungenast ◽  
Mária Suváková ◽  
Walter Jäger ◽  
Theresia Thalhammer

Cannabinoids (CBs) from Cannabis sativa provide relief for tumor-associated symptoms (including nausea, anorexia, and neuropathic pain) in the palliative treatment of cancer patients. Additionally, they may decelerate tumor progression in breast cancer patients. Indeed, the psychoactive delta-9-tetrahydrocannabinol (THC), non-psychoactive cannabidiol (CBD) and other CBs inhibited disease progression in breast cancer models. The effects of CBs on signaling pathways in cancer cells are conferred via G-protein coupled CB-receptors (CB-Rs), CB1-R and CB2-R, but also via other receptors, and in a receptor-independent way. THC is a partial agonist for CB1-R and CB2-R; CBD is an inverse agonist for both. In breast cancer, CB1-R expression is moderate, but CB2-R expression is high, which is related to tumor aggressiveness. CBs block cell cycle progression and cell growth and induce cancer cell apoptosis by inhibiting constitutive active pro-oncogenic signaling pathways, such as the extracellular-signal-regulated kinase pathway. They reduce angiogenesis and tumor metastasis in animal breast cancer models. CBs are not only active against estrogen receptor-positive, but also against estrogen-resistant breast cancer cells. In human epidermal growth factor receptor 2-positive and triple-negative breast cancer cells, blocking protein kinase B- and cyclooxygenase-2 signaling via CB2-R prevents tumor progression and metastasis. Furthermore, selective estrogen receptor modulators (SERMs), including tamoxifen, bind to CB-Rs; this process may contribute to the growth inhibitory effect of SERMs in cancer cells lacking the estrogen receptor. In summary, CBs are already administered to breast cancer patients at advanced stages of the disease, but they might also be effective at earlier stages to decelerate tumor progression.


2020 ◽  
Vol 22 (1) ◽  
pp. 371
Author(s):  
Noemi Eiro ◽  
Sandra Cid ◽  
Nuria Aguado ◽  
María Fraile ◽  
Nagore de Pablo ◽  
...  

Tumor-infiltrating immune cells phenotype is associated with tumor progression. However, little is known about the phenotype of the peripheral blood mononuclear cells (PBMC) from breast cancer patients. We investigated MMP1 and MMP11 expression in PBMC from breast cancer patients and we analyzed gene expression changes upon their interaction with cancer cells and cancer-associated fibroblasts (CAF). We measured the impact of PBMC on proinflammatory gene expression in breast cancer cells, normal fibroblast (NF), and CAF and the impact on proliferation and invasiveness capacity of breast cancer cells. Gene expression of MMP1 and MMP11 in PBMC from breast cancer patients (n = 54) and control (n = 28); expression of IL1A, IL6, IL17, IFNβ, and NFĸB in breast cancer cell lines (MCF-7 and MDA-MB-231); and, additionally, IL10 and MMP11 in CAF and NF were analyzed by qRT-PCR before and after co-culture. Our results show the existence of a subpopulation of breast cancer patients (25.9%) with very high levels of MMP11 gene expression in PBMC. Also, gene expression of MMP1 and MMP11 increases in PBMC after co-culture with breast cancer cell lines, NF or CAF. PBMC from healthy or breast cancer patients induce an increased proliferation rate on MCF-7 and an increased invasiveness capacity of MDA-MB-231. Finally, we show a differential expression profile of inflammatory genes in NF and CAF when co-cultured with control or breast cancer PBMC. We have observed that MMPs’ expression in PBMC is regulated by the microenvironment, while the expression of inflammatory genes in NF or CAF is differentially regulated by PBMC. These findings confirm the importance of the crosstalk between stromal cells and suggest that PBMC would play a role in promoting aggressive tumor behavior.


2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


Sign in / Sign up

Export Citation Format

Share Document