scholarly journals Detection of a novel, primate-specific ‘kill switch’ tumor suppression mechanism that may fundamentally control cancer risk in humans: an unexpected twist in the basic biology of TP53

2018 ◽  
Vol 25 (11) ◽  
pp. R497-R517 ◽  
Author(s):  
Jonathan W Nyce

The activation of TP53 is well known to exert tumor suppressive effects. We have detected aprimate-specificadrenal androgen-mediated tumor suppression system in which circulating DHEAS is converted to DHEA specifically in cells in which TP53 has beeninactivated. DHEA is anuncompetitiveinhibitor of glucose-6-phosphate dehydrogenase (G6PD), an enzyme indispensable for maintaining reactive oxygen species within limits survivable by the cell. Uncompetitive inhibition is otherwise unknown in natural systems because it becomesirreversiblein the presence of high concentrations of substrate and inhibitor. In addition to primate-specific circulating DHEAS, a unique, primate-specific sequence motif that disables an activating regulatory site in the glucose-6-phosphatase (G6PC) promoter was also required to enable function of this previously unrecognized tumor suppression system. In human somatic cells, loss of TP53 thus triggers activation of DHEAS transport proteins and steroid sulfatase, which converts circulating DHEAS into intracellular DHEA, and hexokinase which increases glucose-6-phosphate substrate concentration. The triggering of these enzymes in the TP53-affected cell combines with the primate-specific G6PC promoter sequence motif that enables G6P substrate accumulation, driving uncompetitive inhibition of G6PD to irreversibility and ROS-mediated cell death. By this catastrophic ‘kill switch’ mechanism, TP53 mutations are effectively prevented from initiating tumorigenesis in the somatic cells of humans, the primate with the highest peak levels of circulating DHEAS. TP53 mutations in human tumors therefore represent fossils of kill switch failure resulting from an age-related decline in circulating DHEAS, a potentially reversible artifact of hominid evolution.

2019 ◽  
Vol 26 (2) ◽  
pp. C1-C5
Author(s):  
Jonathan W Nyce

We recently reported our detection of an anthropoid primate-specific, ‘kill switch’ tumor suppression system that reached its greatest expression in humans, but that is fully functional only during the first twenty-five years of life, corresponding to the primitive human lifespan that has characterized the majority of our species' existence. This tumor suppression system is based upon the kill switch being triggered in cells in which p53 has been inactivated; such kill switch consisting of a rapid, catastrophic increase in ROS caused by the induction of irreversible uncompetitive inhibition of glucose-6- phosphate dehydrogenase (G6PD), which requires high concentrations of both inhibitor (DHEA) and G6P substrate. While high concentrations of intracellular DHEA are readily available in primates from the importation and subsequent de-sulfation of circulating DHEAS into p53-affected cells, both an anthropoid primate-specific sequence motif (GAAT) in the glucose-6-phosphatase (G6PC) promoter, and primate-specific inactivation of de novo synthesis of vitamin C by deletion of gulonolactone oxidase (GLO) were required to enable accumulation of G6P to levels sufficient to enable irreversible uncompetitive inhibition of G6PD. Malignant transformation acts as a counterforce opposing vertebrate speciation, particularly increases in body size and lifespan that enable optimized exploitation of particular niches. Unique mechanisms of tumor suppression that evolved to enable niche exploitation distinguish vertebrate species, and prevent one vertebrate species from serving as a valid model system for another. This here-to-fore unrecognized element of speciation undermines decades of cancer research data, using murine species, which presumed universal mechanisms of tumor suppression, independent of species. Despite this setback, the potential for pharmacological reconstitution of the kill switch tumor suppression system that distinguishes our species suggests that ‘normalization’ of human cancer risk, from its current 40% to the 4% of virtually all other large, long-lived species, represents a realistic near-term goal.


1991 ◽  
Vol 11 (4) ◽  
pp. 1944-1953
Author(s):  
I M Santoro ◽  
T M Yi ◽  
K Walsh

A sequence-specific DNA-binding protein from skeletal-muscle extracts that binds to probes of three muscle gene DNA elements is identified. This protein, referred to as muscle factor 3, forms the predominant nucleoprotein complex with the MCAT gene sequence motif in an electrophoretic mobility shift assay. This protein also binds to the skeletal actin muscle regulatory element, which contains the conserved CArG motif, and to a creatine kinase enhancer probe, which contains the E-box motif, a MyoD-binding site. Muscle factor 3 has a potent sequence-specific, single-stranded-DNA-binding activity. The specificity of this interaction was demonstrated by sequence-specific competition and by mutations that diminished or eliminated detectable complex formation. MyoD, a myogenic determination factor that is distinct from muscle factor 3, also bound to single-stranded-DNA probes in a sequence-specific manner, but other transcription factors did not. Multiple copies of the MCAT motif activated the expression of a heterologous promoter, and a mutation that eliminated expression was correlated with diminished factor binding. Muscle factor 3 and MyoD may be members of a class of DNA-binding proteins that modulate gene expression by their abilities to recognize DNA with unusual secondary structure in addition to specific sequence.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
O Kocur ◽  
A Trout ◽  
P Xie ◽  
A Petrini ◽  
Z Rosenwaks ◽  
...  

Abstract Study question We analyzed the efficacy of generating artificial oocytes using somatic cells (SCs) from two mouse strains (B6D2F1 and FVB) and followed their full pre-/post-implantation development. Summary answer While artificial oocytes generated from the new strain (FVB) had higher fertilization rates, those from the standard strain (B6D2F1) provided expanded blastocysts and fertile pups. What is known already B6D2F1 is a popular hybrid mouse strain for cloning and transgenic creation due to its geno-/pheno-typic uniformity and high oocyte yield and quality. Indeed, B6D2F1 oocytes have a distinct metaphase II (MII) spindle complex, making them an ideal candidate to generate ooplasts used in SC nuclear transfer (SCNT). However, because they lack genetic variance, they are less suitable for reciprocal SCNT studies. In contrast, FVB mice have single nucleotide polymorphisms and indels on each chromosome that can aid in tracing the pedigree of progeny. Study design, size, duration A total of 10 experiments were performed over the course of 3 months, using 30 stimulated mice. SCs were retrieved from cumulus oophorus harvested from FVB and B6D2F1 mice. SCs from both strains were injected into enucleated MII B6D2F1 oocytes. Unmanipulated B6D2F1 oocytes were piezo-ICSI inseminated, serving as controls. The occurrence of haploidization, fertilization, and full preimplantation development was compared. Some blastocysts were transferred into pseudo-pregnant CD–1 mice to obtain offspring. Participants/materials, setting, methods Oocyte enucleation was performed under Oosight™ visualization and cytochalasin B exposure. An FVB or B6D2F1 SC was transferred into the perivitelline space of the ooplast with Sendai virus to promote fusion. Haploidization was monitored by pseudo-meiotic spindle formation followed by extrusion of a pseudo-polar body after insemination. Conceptuses were cultured in a time-lapse imaging system, with piezo-ICSI controls. Expanded blastocysts were transferred into uterine horns of pseudo-pregnant mice. Offspring were mated to test their fertility. Main results and the role of chance FVB (n = 278) and B6D2F1 (n = 905) SCs at G0 phase, with a diameter <10 mm, were chosen for SCNT and transferred into enucleated B6D2F1 ooplasts. Enucleation of 1,212 oocytes yielded a survival rate of 97.6%. Both FVB and B6D2F1 SCNT resulted in similar survival rates of 100% and 98.5%, respectively. Successful haploidization, determined by the presence of a pseudo-meiotic spindle 2 hours after SCNT, was also comparable, with 59.9% of FVB and 63.7% of B6D2F1. Survival after piezo-ICSI was also comparable between FVB- and B6D2F1-reconstituted oocytes, with rates of 64.3% and 60.3%, respectively, albeit lower than the control (75.2%, P < 0.00001). FVB embryos fertilized at a rate of 88.7%, comparable to the control zygotes at 85.8%, while B6D2F1 conceptuses demonstrated a lower fertilization rate (70.8%, P < 0.00001). Blastulation of FVB- and B6D2F1-derived embryos was 15.1% and 24.0%, respectively, while the control was 80.7% (P < 0.00001). Whole-genome karyotyping of 9 B6D2F1-derived blastocysts confirmed 5 of the samples to be euploid. FVB blastocysts (N = 8) and B6D2F1 blastocysts (N = 81) were transferred into pseudo-pregnant mice, resulting in 3 fertile offspring only from the B6D2F1 conceptuses. Limitations, reasons for caution This is still a limited number of observations, and pups were delivered only from the B6D2F1 strain. The utilization of a strain with higher genetic variance may help facilitate offspring fingerprinting. Wider implications of the findings: This study demonstrates the ability to generate artificial genotyped conceptuses, yielding live offspring. The identification of a feasible donor cell, together with optimization of cell cycle stage and standardization of post-implantation development, will help promote this technique for human reproduction in couples with age-related infertility or poor ovarian reserve. Trial registration number N/A


1991 ◽  
Vol 11 (4) ◽  
pp. 1944-1953 ◽  
Author(s):  
I M Santoro ◽  
T M Yi ◽  
K Walsh

A sequence-specific DNA-binding protein from skeletal-muscle extracts that binds to probes of three muscle gene DNA elements is identified. This protein, referred to as muscle factor 3, forms the predominant nucleoprotein complex with the MCAT gene sequence motif in an electrophoretic mobility shift assay. This protein also binds to the skeletal actin muscle regulatory element, which contains the conserved CArG motif, and to a creatine kinase enhancer probe, which contains the E-box motif, a MyoD-binding site. Muscle factor 3 has a potent sequence-specific, single-stranded-DNA-binding activity. The specificity of this interaction was demonstrated by sequence-specific competition and by mutations that diminished or eliminated detectable complex formation. MyoD, a myogenic determination factor that is distinct from muscle factor 3, also bound to single-stranded-DNA probes in a sequence-specific manner, but other transcription factors did not. Multiple copies of the MCAT motif activated the expression of a heterologous promoter, and a mutation that eliminated expression was correlated with diminished factor binding. Muscle factor 3 and MyoD may be members of a class of DNA-binding proteins that modulate gene expression by their abilities to recognize DNA with unusual secondary structure in addition to specific sequence.


2017 ◽  
Vol 1 (3) ◽  
Author(s):  
Jonathan W. Nyce

Glucose-6-phosphate dehydrogenase (G6PD) is an oncoprotein that is regulated by the p53 tumor suppressor. Mutant p53 loses the ability to inhibit G6PD, and loss of G6PD control clearly plays a role in oncogenesis. The steroid hormone precursor dehydroepiandrosterone (DHEA) is an endogenous uncompetitive inhibitor of G6PD. In humans, and a few other species, the sulfated circulatory form of DHEA (DHEAS) is present at extremely high concentrations – much higher than can be accounted for by DHEA’s function as a precursor to steroid hormones. Uncompetitive inhibition is extremely rare in natural systems because it is irreversible in the presence of high concentrations of substrate and inhibitor. What has gone unappreciated is that such uncompetitive inhibition can quickly lead to cell death when the target is an obligatory housekeeping gene such as G6PD. Cells with inactivated p53 not only lose control over G6PD, but also over hexokinase (HK), the enzyme that converts glucose into glucose-6-phosphate (G6P), the substrate of G6PD. Furthermore, loss of p53 function de-represses NFκB activity, resulting in the upregulation of steroid sulfatase (SS) which converts circulating DHEAS into active DHEA. We propose that inactivation of p53 rapidly elevates G6P and DHEA concentrations in affected cells, driving uncompetitive inhibition of G6PD to lethal irreversibility. In animals with circulating DHEAS, this kill-switch mechanism may prevent most cases of p53 inactivation from becoming tumorigenic. Tumors would thus represent instances in which this mechanism had not been triggered, but which might still be triggered by application of DHEA sufficient to uncompetitively inhibit tumor G6PD. To test this hypothesis, we performed a pilot study in which dogs with cardiac hemangiosarcoma were treated with high dose (HD) DHEA supplemented with isoprene precursors to maintain geranylation of Rac GTPase. Tumor regression and longevity observed in these dogs supported the concept that some tumors retain extraordinary sensitivity to uncompetitive inhibition by DHEA.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Fanggang Ren ◽  
Na Zhang ◽  
Lan Zhang ◽  
Eric Miller ◽  
Jeffrey J. Pu

AbstractPolyadenylation of pre-messenger RNA (pre-mRNA) specific sites and termination of their downstream transcriptions are signaled by unique sequence motif structures such as AAUAAA and its auxiliary elements. Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism that processes RNA products depending on its 3′-untranslated region (3′-UTR) specific sequence signal. APA processing can generate several mRNA isoforms from a single gene, which may have different biological functions on their target gene. As a result, cellular genomic stability, proliferation capability, and transformation feasibility could all be affected. Furthermore, APA modulation regulates disease initiation and progression. APA status could potentially act as a biomarker for disease diagnosis, severity stratification, and prognosis forecast. While the advance of modern throughout technologies, such as next generation-sequencing (NGS) and single-cell sequencing techniques, have enriched our knowledge about APA, much of APA biological process is unknown and pending for further investigation. Herein, we review the current knowledge on APA and how its regulatory complex factors (CFI/IIm, CPSF, CSTF, and RBPs) work together to determine RNA splicing location, cell cycle velocity, microRNA processing, and oncogenesis regulation. We also discuss various APA experiment strategies and the future direction of APA research.


2003 ◽  
Vol 69 (5) ◽  
pp. 2638-2650 ◽  
Author(s):  
Iwona Mruk ◽  
Tadeusz Kaczorowski

ABSTRACT The EcoVIII restriction-modification (R-M) system is carried by the Escherichia coli E1585-68 natural plasmid pEC156 (4,312 bp). The two genes were cloned and characterized. The G+C content of the EcoVIII R-M system is 36.1%, which is significantly lower than the average G+C content of either plasmid pEC156 (43.6%) or E. coli genomic DNA (50.8%). The difference suggests that there is a possibility that the EcoVIII R-M system was recently acquired by the genome. The 921-bp EcoVIII endonuclease (R · EcoVIII) gene (ecoVIIIR) encodes a 307-amino-acid protein with an M r of 35,554. The convergently oriented EcoVIII methyltransferase (M · EcoVIII) gene (ecoVIIIM) consists of 912 bp that code for a 304-amino-acid protein with an M r of 33,930. The exact positions of the start codon AUG were determined by protein microsequencing. Both enzymes recognize the specific palindromic sequence 5′-AAGCTT-3′. Preparations of EcoVIII R-M enzymes purified to homogeneity were characterized. R · EcoVIII acts as a dimer and cleaves a specific sequence between two adenine residues, leaving 4-nucleotide 5′ protruding ends. M · EcoVIII functions as a monomer and modifies the first adenine residue at the 5′ end of the specific sequence to N 6-methyladenine. These enzymes are thus functionally identical to the corresponding enzymes of the HindIII (Haemophilus influenzae Rd) and LlaCI (Lactococcus lactis subsp. cremoris W15) R-M systems. This finding is reflected by the levels of homology of M · EcoVIII with M · HindIII and M · LlaCI at the amino acid sequence level (50 and 62%, respectively) and by the presence of nine sequence motifs conserved among m6 N-adenine β-class methyltransferases. The deduced amino acid sequence of R · EcoVIII shows weak homology with its two isoschizomers, R · HindIII (26%) and R · LlaCI (17%). A catalytic sequence motif characteristic of restriction endonucleases was found in the primary structure of R · EcoVIII (D108X12DXK123), as well as in the primary structures of R · LlaCI and R · HindIII. Polyclonal antibodies raised against R · EcoVIII did not react with R · HindIII, while anti-M · EcoVIII antibodies cross-reacted with M · LlaCI but not with M · HindIII. R · EcoVIII requires Mg(II) ions for phosphodiester bond cleavage. We found that the same ions are strong inhibitors of the M · EcoVIII enzyme. The biological implications of this finding are discussed.


2020 ◽  
Vol 35 (6) ◽  
pp. 1332-1345
Author(s):  
K W Olsen ◽  
J Castillo-Fernandez ◽  
A Zedeler ◽  
N C Freiesleben ◽  
M Bungum ◽  
...  

Abstract STUDY QUESTION Does women’s age affect the DNA methylation (DNAm) profile differently in mural granulosa cells (MGCs) from other somatic cells? SUMMARY ANSWER Accumulation of epimutations by age and a higher number of age-related differentially methylated regions (DMR) in MGCs were found compared to leukocytes from the same woman, suggesting that the MGCs have a distinctive epigenetic profile. WHAT IS KNOWN ALREADY The mechanisms underlying the decline in women’s fertility from the mid-30s remain to be fully elucidated. The DNAm age of many healthy tissues changes predictably with and follows chronological age, but DNAm age in some reproductive tissues has been shown to depart from chronological age (older: endometrium; younger: cumulus cells, spermatozoa). STUDY DESIGN, SIZE, DURATION This study is a multicenter cohort study based on retrospective analysis of prospectively collected data and material derived from healthy women undergoing IVF or ICSI treatment following ovarian stimulation with antagonist protocol. One hundred and nineteen women were included from September 2016 to June 2018 from four clinics in Denmark and Sweden. PARTICIPANTS/MATERIALS, SETTING, METHODS Blood samples were obtained from 118 healthy women with varying ovarian reserve status. MGCs were collected from 63 of the 119 women by isolation from pooled follicles immediately after oocyte retrieval. DNA from leukocytes and MGCs was extracted and analysed with a genome-wide methylation array. Data from the methylation array were processed using the ENmix package. Subsequently, DNAm age was calculated using established and tailored age predictors and DMRs were analysed with the DMRcate package. MAIN RESULTS AND ROLE OF CHANCE Using established age predictors, DNAm age in MGCs was found to be considerable younger and constant (average: 2.7 years) compared to chronological age (average: 33.9 years). A Granulosa Cell clock able to predict the age of both MGCs (average: 32.4 years) and leukocytes (average: 38.8 years) was successfully developed. MGCs differed from leukocytes in having a higher number of epimutations (P = 0.003) but predicted telomere lengths unaffected by age (Pearson’s correlation coefficient = −0.1, P = 0.47). DMRs associated with age (age-DMRs) were identified in MGCs (n = 335) and in leukocytes (n = 1) with a significant enrichment in MGCs for genes involved in RNA processing (45 genes, P = 3.96 × 10−08) and gene expression (152 genes, P = 2.3 × 10−06). The top age-DMRs included the metastable epiallele VTRNA2-1, the DNAm regulator ZFP57 and the anti-Müllerian hormone (AMH) gene. The apparent discordance between different epigenetic measures of age in MGCs suggests that they reflect difference stages in the MGC life cycle. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION No gene expression data were available to associate with the epigenetic findings. The MGCs are collected during ovarian stimulation, which may influence DNAm; however, no correlation between FSH dose and number of epimutations was found. WIDER IMPLICATIONS OF THE FINDINGS Our findings underline that the somatic compartment of the follicle follows a different methylation trajectory with age than other somatic cells. The higher number of epimutations and age-DMRs in MGCs suggest that their function is affected by age. STUDY FUNDING/COMPETING INTEREST(S) This project is part of ReproUnion collaborative study, co-financed by the European Union, Interreg V ÖKS, the Danish National Research Foundation and the European Research Council. The authors declare no conflict of interest.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3477-3477
Author(s):  
Caner Saygin ◽  
Todd C. Knepper ◽  
Alexandra E Rojek ◽  
Peng Wang ◽  
Jeremy Segal ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) represents 20% of adult leukemias. Recent technologic advances have enabled detailed characterization of the genetic basis of leukemogenesis in ALL, including somatic structural DNA rearrangements and sequence mutations that disrupt lymphoid development, signaling, tumor suppression, and epigenetic modification. These studies also showed differences in the molecular profiles of pediatric vs adult ALL. However, adults with ALL, especially older adults (≥40 years), were underrepresented in these large series. Clinical outcomes of older adults with ALL are inferior to younger patients (<40 years) and the molecular basis for these differences is not completely understood. Hematopoietic stem cells accumulate DNA mutations with aging, and age-related clonal hematopoiesis (ARCH) has been linked to increased incidence of myeloid malignancies. The prevalence of ARCH increases logarithmically as the population ages, but its role in lymphoid leukemogenesis has not been fully established. We hypothesize that ARCH is a common precursor lesion for the development of ALL in older adults, and patients with ARCH-associated ALL have different clinical outcomes compared to patients whose disease do not harbor these mutations. We retrospectively studied adults with ALL treated at the University of Chicago and Moffitt Cancer Center between July 2014 and April 2021. Genetic profiling of tumor samples was performed by using Miseq Illumina next-generation sequencing (NGS) platform with a comprehensive sequencing panel covering commonly mutated myeloid and lymphoid genes. We classified pathogenicity using American College of Medical Genetics and Genomics guidelines. In total, 345 patients were studied: 286 (83%) had B-ALL, 49 (14%) had T-ALL and 10 (3%) had early T-precursor (ETP)-ALL. Overall, median age at diagnosis was 47 years (range, 18-88 years), and 211 (61%) were ≥40 years at diagnosis; 154 (45%) were women. Cytogenetic groups were as follows: 24% had Ph+ ALL, 13% had Ph-like ALL, and 3% had ALL with KMT2A rearrangement. The most frequent mutation in our adult ALL cohort was the loss of CDKN2A gene (32%), followed by mutations in TP53 (17%), IKZF1 (16%), NOTCH1 (9%), NRAS (9%), and JAK2 (6%) genes. Mutations involving the recurrently mutated genes in ARCH were seen in 110 of 345 patients (32%) with the following order of frequency: TP53 (17%), DNMT3A (5%), TET2 (4%), RUNX1 (3.5%), ASXL1 (3%), IDH1/2 (2%), BCORL1 (2%), EZH2 (1%), CUX1 (1%), and U2AF1 (1%) (Figure 1A). ARCH-associated mutations were more common in older adults (≥40 years) compared to young adults (41% vs 17%, p< 0.0001). Variant allelic frequencies (VAFs) for the ARCH-associated mutations were higher than the mutations involving signaling pathways, which suggests the ancestral nature of the former and secondary nature of the latter (Figure 1B). We further observed clonal dynamics in patients with serial diagnosis, remission and relapse samples available for sequencing. Founder ARCH clones re-emerged at the time of relapse (patient 92 and 100), and were also detectable at the time of complete remission with persistent measurable residual disease (patient 100) (Figure 1C). The overall survival (OS) for patients with ARCH-associated ALL was shorter than patients without ARCH, but the difference did not reach statistical significance (median OS, 39 months vs 84 months, p= 0.16) (Figure 1D). Our results indicate that ARCH is commonly identified as an ancestral event in older adults with ALL, with TP53 mutations being the most prevalent. Unlike patients with AML and TP53 mutations, patients with ALL and ARCH-associated mutations had comparable clinical outcomes to patients without ARCH. This may reflect the frequent use of antibody-based therapies (i.e. blinatumomab and inotuzumab) at diagnosis (on a clinical trial basis) or relapse in the two centers where these patients were treated. Collectively, these data suggest that ARCH may constitute a fertile soil for acute lymphoblastic leukemogenesis and further studies are warranted to interrogate the dynamic interplay between myeloid and lymphoid compartments of these patients. Figure 1 Figure 1. Disclosures Stock: Pfizer: Consultancy, Honoraria, Research Funding; amgen: Honoraria; agios: Honoraria; jazz: Honoraria; kura: Honoraria; kite: Honoraria; morphosys: Honoraria; servier: Honoraria; syndax: Consultancy, Honoraria; Pluristeem: Consultancy, Honoraria. Shah: BeiGene: Consultancy, Honoraria; Incyte: Research Funding; Acrotech/Spectrum: Honoraria; Novartis: Consultancy, Other: Expenses; Pfizer: Consultancy, Other: Expenses; Amgen: Consultancy; Servier Genetics: Other; Jazz Pharmaceuticals: Research Funding; Precision Biosciences: Consultancy; Pharmacyclics/Janssen: Honoraria, Other: Expenses; Kite, a Gilead Company: Consultancy, Honoraria, Other: Expenses, Research Funding; Adaptive Biotechnologies: Consultancy; Bristol-Myers Squibb/Celgene: Consultancy, Other: Expenses.


Sign in / Sign up

Export Citation Format

Share Document