scholarly journals Characterization of the human SLC30A8 promoter and intronic enhancer

2011 ◽  
Vol 47 (3) ◽  
pp. 251-259 ◽  
Author(s):  
Lynley D Pound ◽  
Suparna A Sarkar ◽  
Stéphane Cauchi ◽  
Yingda Wang ◽  
James K Oeser ◽  
...  

Genome-wide association studies have shown that a polymorphic variant inSLC30A8, which encodes zinc transporter-8, is associated with altered susceptibility to type 2 diabetes (T2D). This association is consistent with the observation that glucose-stimulated insulin secretion is decreased in islets isolated fromSlc30a8knockout mice. In this study, immunohistochemical staining was first used to show thatSLC30A8is expressed specifically in pancreatic islets. Fusion gene studies were then used to examine the molecular basis for the islet-specific expression ofSLC30A8. The analysis ofSLC30A8-luciferase expression in βTC-3 cells revealed that the proximal promoter region, located between −6154 and −1, relative to the translation start site, was only active in stable but not transient transfections. VISTA analyses identified three regions in theSLC30A8promoter and a region inSLC30A8intron 2 that are conserved in the mouseSlc30a8gene. Additional fusion gene experiments demonstrated that none of theseSlc30a8promoter regions exhibited enhancer activity when ligated to a heterologous promoter whereas the conserved region inSLC30A8intron 2 conferred elevated reporter gene expression selectively in βTC-3 but not in αTC-6 cells. Finally, the functional effects of a single nucleotide polymorphism (SNP), rs62510556, in this conserved intron 2 enhancer were investigated. Gel retardation studies showed that rs62510556 affects the binding of an unknown transcription factor and fusion gene analyses showed that it modulates enhancer activity. However, genetic analyses suggest that this SNP is not a causal variant that contributes to the association betweenSLC30A8and T2D, at least in Europeans.

2020 ◽  
Author(s):  
Nadja Makki ◽  
Jingjing Zhao ◽  
Zhaoyang Liu ◽  
Walter L. Eckalbar ◽  
Aki Ushiki ◽  
...  

AbstractAdolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ∼3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in noncoding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral discs (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and ChIP-seq against H3K27ac in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


2020 ◽  
Author(s):  
Ruslan M. Deviatiiarov ◽  
Anna Gams ◽  
Roman Syunyaev ◽  
Tatiana V. Tatarinova ◽  
Oleg Gusev ◽  
...  

AbstractGenome regulatory elements play a critical role during cardiac development and maintenance of normal physiological homeostasis, and genome-wide association studies identified a large number of SNPs associated with cardiovascular diseases localized in intergenic zones. We used cap analysis of gene expression (CAGE) to identify transcription start sites (TSS) with one nucleotide resolution that effectively maps genome regulatory elements in a representative collection of human heart tissues. Here we present a comprehensive and fully annotated CAGE atlas of human promoters and enhancers from four chambers of the non-diseased human donor hearts, including both atria and ventricles. We have identified 10,528 novel regulatory elements, where 2,750 are classified as TSS and 4,258 novel enhancers, which were validated with ChIP-seq libraries and motif enrichment analysis. We found that heart-region specific expression patterns are primarily based on the alternative promoter and specific enhancer activity. Our study significantly increased evidence of the association of regulatory elements-located variants with heart morphology and pathologies. The precise location of cardiac disease-related SNPs within the regulatory regions and their correlation with a specific cell type offers a new understanding of genetic heart diseases.


2010 ◽  
Vol 433 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Lynley D. Pound ◽  
Yan Hang ◽  
Suparna A. Sarkar ◽  
Yingda Wang ◽  
Laurel A. Milam ◽  
...  

The SLC30A8 gene encodes the zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Genome-wide association studies have shown that a polymorphic variant in SLC30A8 is associated with altered susceptibility to Type 2 diabetes and we recently reported that glucose-stimulated insulin secretion is decreased in islets isolated from Slc30a8-knockout mice. The present study examines the molecular basis for the islet-specific expression of Slc30a8. VISTA analyses identified two conserved regions in Slc30a8 introns 2 and 3, designated enhancers A and B respectively. Transfection experiments demonstrated that enhancer B confers elevated fusion gene expression in both βTC-3 cells and αTC-6 cells. In contrast, enhancer A confers elevated fusion gene expression selectively in βTC-3 and not αTC-6 cells. These data suggest that enhancer A is an islet β-cell-specific enhancer and that the mechanisms controlling Slc30a8 expression in α- and β-cells are overlapping, but distinct. Gel retardation and ChIP (chromatin immunoprecipitation) assays revealed that the islet-enriched transcription factor Pdx-1 binds enhancer A in vitro and in situ respectively. Mutation of two Pdx-1-binding sites in enhancer A markedly reduces fusion gene expression suggesting that this factor contributes to Slc30a8 expression in β-cells, a conclusion consistent with developmental studies showing that restriction of Pdx-1 to pancreatic islet β-cells correlates with the induction of Slc30a8 gene expression and ZnT-8 protein expression in vivo.


2020 ◽  
Author(s):  
Ruslan Deviatiiarov ◽  
Anna Gams ◽  
Roman Syunyaev ◽  
Tatiana Tatarinova ◽  
Oleg Gusev ◽  
...  

Abstract Genome regulatory elements play a critical role during cardiac development and maintenance of normal physiological homeostasis, and genome-wide association studies identified a large number of SNPs associated with cardiovascular diseases localized in intergenic zones. We used cap analysis of gene expression (CAGE) to identify transcription start sites (TSS) with one nucleotide resolution that effectively maps genome regulatory elements in a representative collection of human heart tissues. Here we present a comprehensive and fully annotated CAGE atlas of human promoters and enhancers from four chambers of the non-diseased human donor hearts, including both atria and ventricles. We have identified 10,528 novel regulatory elements, where 2,750 are classified as TSS and 4,258 novel enhancers, which were validated with ChIP-seq libraries and motif enrichment analysis. We found that heart-region specific expression patterns are primarily based on the alternative promoter and specific enhancer activity. Our study significantly increased evidence of the association of regulatory elements-located variants with heart morphology and pathologies. The precise location of cardiac disease-related SNPs within the regulatory regions and their correlation with a specific cell type offers a new understanding of genetic heart diseases.


2020 ◽  
Author(s):  
Nadja Makki ◽  
Jingjing Zhao ◽  
Zhaoyang Liu ◽  
Walter L Eckalbar ◽  
Aki Ushiki ◽  
...  

Abstract Adolescent idiopathic scoliosis (AIS), a sideways curvature of the spine, is the most common pediatric musculoskeletal disorder, affecting ~ 3% of the population worldwide. However, its genetic bases and tissues of origin remain largely unknown. Several genome-wide association studies (GWAS) have implicated nucleotide variants in noncoding sequences that control genes with important roles in cartilage, muscle, bone, connective tissue and intervertebral discs (IVDs) as drivers of AIS susceptibility. Here, we set out to define the expression of AIS-associated genes and active regulatory elements by performing RNA-seq and ChIP-seq against H3K27ac in these tissues in mouse and human. Our study highlights genetic pathways involving AIS-associated loci that regulate chondrogenesis, IVD development and connective tissue maintenance and homeostasis. In addition, we identify thousands of putative AIS-associated regulatory elements which may orchestrate tissue-specific expression in musculoskeletal tissues of the spine. Quantification of enhancer activity of several candidate regulatory elements from our study identifies three functional enhancers carrying AIS-associated GWAS SNPs at the ADGRG6 and BNC2 loci. Our findings provide a novel genome-wide catalog of AIS-relevant genes and regulatory elements and aid in the identification of novel targets for AIS causality and treatment.


2021 ◽  
pp. annrheumdis-2019-216794
Author(s):  
Akari Suzuki ◽  
Matteo Maurizio Guerrini ◽  
Kazuhiko Yamamoto

For more than a decade, genome-wide association studies have been applied to autoimmune diseases and have expanded our understanding on the pathogeneses. Genetic risk factors associated with diseases and traits are essentially causative. However, elucidation of the biological mechanism of disease from genetic factors is challenging. In fact, it is difficult to identify the causal variant among multiple variants located on the same haplotype or linkage disequilibrium block and thus the responsible biological genes remain elusive. Recently, multiple studies have revealed that the majority of risk variants locate in the non-coding region of the genome and they are the most likely to regulate gene expression such as quantitative trait loci. Enhancer, promoter and long non-coding RNA appear to be the main target mechanisms of the risk variants. In this review, we discuss functional genetics to challenge these puzzles.


2010 ◽  
Vol 30 (6) ◽  
pp. 1411-1420 ◽  
Author(s):  
Jason B. Wright ◽  
Seth J. Brown ◽  
Michael D. Cole

ABSTRACT Genome-wide association studies have mapped many single-nucleotide polymorphisms (SNPs) that are linked to cancer risk, but the mechanism by which most SNPs promote cancer remains undefined. The rs6983267 SNP at 8q24 has been associated with many cancers, yet the SNP falls 335 kb from the nearest gene, c-MYC. We show that the beta-catenin-TCF4 transcription factor complex binds preferentially to the cancer risk-associated rs6983267(G) allele in colon cancer cells. We also show that the rs6983267 SNP has enhancer-related histone marks and can form a 335-kb chromatin loop to interact with the c-MYC promoter. Finally, we show that the SNP has no effect on the efficiency of chromatin looping to the c-MYC promoter but that the cancer risk-associated SNP enhances the expression of the linked c-MYC allele. Thus, cancer risk is a direct consequence of elevated c-MYC expression from increased distal enhancer activity and not from reorganization/creation of the large chromatin loop. The findings of these studies support a mechanism for intergenic SNPs that can promote cancer through the regulation of distal genes by utilizing preexisting large chromatin loops.


Author(s):  
Fernanda M Bosada ◽  
Mathilde R Rivaud ◽  
Jae-Sun Uhm ◽  
Sander Verheule ◽  
Karel van Duijvenboden ◽  
...  

Rationale: Atrial Fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Genome-wide association studies have identified AF-associated common variants across 100+ genomic loci, but the mechanism underlying the impact of these variant loci on AF susceptibility in vivo has remained largely undefined. One such variant region, highly associated with AF, is found at 1q24, close to PRRX1, encoding the Paired Related Homeobox 1 transcription factor. Objective: To identify the mechanistic link between the variant region at 1q24 and AF predisposition. Methods and Results: The mouse orthologue of the noncoding variant genomic region (R1A) at 1q24 was deleted using CRISPR genome editing. Among the genes sharing the topologically associated domain with the deleted R1A region (Kifap3, Prrx1, Fmo2, Prrc2c), only the broadly expressed gene Prrx1 was downregulated in mutants, and only in cardiomyocytes. Expression and epigenetic profiling revealed that a cardiomyocyte lineage-specific gene program (Mhrt, Myh6, Rbm20, Tnnt2, Ttn, Ckm) was upregulated in R1A-/- atrial cardiomyocytes, and that Mef2 binding motifs were significantly enriched at differentially accessible chromatin sites. Consistently, Prrx1 suppressed Mef2-activated enhancer activity in HL-1 cells. Mice heterozygous or homozygous for the R1A deletion were susceptible to atrial arrhythmia induction, had atrial conduction slowing and more irregular RR intervals. Isolated R1A-/- mouse left atrial cardiomyocytes showed lower action potential upstroke velocities and sodium current, as well as increased systolic and diastolic calcium concentrations compared to controls. Conclusions: The noncoding AF variant region at 1q24 modulates Prrx1 expression in cardiomyocytes. Cardiomyocyte-specific reduction of Prrx1 expression upon deletion of the noncoding region leads to a profound induction of a cardiac lineage-specific gene program and to propensity for AF. These data indicate that AF-associated variants in humans may exert AF predisposition through reduced PRRX1 expression in cardiomyocytes.


2019 ◽  
Author(s):  
Nana Liu ◽  
Jeffrey Hsu ◽  
Gautam Mahajan ◽  
Han Sun ◽  
John Barnard ◽  
...  

ABSTRACTRationaleAtrial fibrillation (AF) genome-wide association studies (GWAS) identified significant associations for rs1152591 and linked variants in the SYNE2 gene encoding the nesprin-2 protein that connects the nuclear membrane with the cytoskeletonObjectiveDetermine the effects of the AF-associated rs1152591 and rs1152595, two linked intronic single nucleotide polymorphisms (SNPs), on SYNE2 expression and investigate the mechanisms for their association with AF.Methods and ResultsRNA sequencing of human left atrial appendage (LAA) tissues indicated that rs1152591 and rs1152595 were significantly associated with the expressions of SYNE2α1, a short mRNA isoform, without an effect on the expression of the full-length SYNE2 mRNA. SYNE2α1 mRNA uses an alternative transcription start site and encodes an N-terminal deleted 62 kDa nesprin-2α1 isoform, which can act as a dominant-negative on nuclear-cytoskeleton connectivity. Western blot and qPCR assays confirmed that AF risk alleles of both SNPs were associated with lower expression of nesprin-2α1 in human LAA tissues. Reporter gene transfections demonstrated that the risk vs. reference alleles of rs1152591 and rs1152595 had decreased enhancer activity. SYNE2 siRNA knockdown (KD) or nesprin-2α1 overexpression studies in human stem cell-derived induced cardiomyocytes (iCMs) resulted in ~12.5 % increases in the nuclear area compared to controls (p<0.001). Atomic force microscopy demonstrated that SYNE2 KD or nesprin-2α1 overexpression led to 57.5% or 33.2% decreases, respectively, in nuclear stiffness compared to controls (p< 0.0001).ConclusionsAF-associated SNPs rs1152591 and rs1152595 downregulate the expression of SYNE2α1, increasing nuclear-cytoskeletal connectivity and nuclear stiffness. The resulting increase in mechanical stress may play a role in the development of AF.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Nathan R Tucker ◽  
Jiangchuan Ye ◽  
Honghuang Lin ◽  
Michael A McLellan ◽  
Emelia J Benjamin ◽  
...  

Introduction: Genome-wide association studies have identified 14 independent loci for atrial fibrillation (AF). The 4q25 locus upstream of the left-right asymmetry gene PITX2 is, by far, the strongest association signal for AF. However, as with most GWAS loci, the functional variants are noncoding, presumed to be regulatory, and remain unknown. We therefore sought to rapidly identify the functional variants at an AF locus by combining high throughput sequencing and massively parallel reporter assays. Methods and Results: We sequenced a ~750kb region encompassing the PITX2 locus in 462 individuals with early-onset AF from the MGH AF Study and 464 referents from the Framingham Heart Study. The SNP most significantly associated with AF in our sequenced sample was rs2129983, which is 140kb from PITX2 (OR=2.43, P =8.9X10 -16 ). rs2129983 is approximately 1.7kb from the most significantly associated SNP in a prior AF GWAS, rs6817105 (r 2 =0.52). From the targeted sequencing analysis, we identified 262 SNVs with a MAF >0.5% within a genomic region bounded by SNPs with an r2 greater than 0.4 with the top variant. To identify functional variants, we then utilized a massively parallel reporter assay (MPRA) in order to measure enhancer activity at each SNP across the entire AF locus. In both HL-1 and C2C12 myoblasts, MPRA identified many distinct SNP regions with differential enhancer activity. Using AF-association status as a standard, we were able to identify a series of variants that have both differential activity in either cell line tested and also a high level of association (rs17042076, rs4469143). Mechanistically, these functional SNPs are predicted to alter transcription factor binding. Conclusions: We have comprehensively identified the AF-associated variation at 4q25 and determined which of these variants are functional through differential enhancer activity. Here, in addition to identifying the causative variation for AF at 4q25, we provide a generalizable pathway for translating this work to other loci, a method that could expedite the identification of causative genetic variants at other disease loci.


Sign in / Sign up

Export Citation Format

Share Document