scholarly journals Peripheral T3 signaling is the target of pesticides in zebrafish larvae and adult liver

2020 ◽  
Vol 247 (1) ◽  
pp. 53-68
Author(s):  
Marco Colella ◽  
Valeria Nittoli ◽  
Alfonsina Porciello ◽  
Immacolata Porreca ◽  
Carla Reale ◽  
...  

The intra-tissue levels of thyroid hormones (THs) regulate organ functions. Environmental factors can impair these levels by damaging the thyroid gland and/or peripheral TH metabolism. We investigated the effects of embryonic and/or long-life exposure to low-dose pesticides, ethylene thiourea (ETU), chlorpyrifos (CPF) and both combined on intra-tissue T4/T3 metabolism/signaling in zebrafish at different life stages. Hypothyroidism was evident in exposed larvae that showed reduced number of follicles and induced tshb mRNAs. Despite that, we found an increase in free T4 (fT4) and free T3 (fT3) levels/signaling that was confirmed by transcriptional regulation of TH metabolic enzymes (deiodinases) and T3-regulated mRNAs (cpt1, igfbp1a). Second-generation larvae showed that thyroid and TH signaling was affected even when not directly exposed, suggesting the role of parental exposure. In adult zebrafish, we found that sex-dependent damage of hepatic T3 level/signaling was associated with liver steatosis, which was more pronounced in females, with sex-dependent alteration of transcripts codifying the key enzymes involved in ‘de novo lipogenesis’ and β-oxidation. We found impaired activation of liver T3 and PPARα/Foxo3a pathways whose deregulation was already involved in mammalian liver steatosis. The data emphasizes that the intra-tissue imbalance of the T3 level is due to thyroid endocrine disruptors (THDC) and suggests that the effect of a slight modification in T3 signaling might be amplified by its direct regulation or crosstalk with PPARα/Foxo3a pathways. Because T3 levels define the hypothyroid/hyperthyroid status of each organ, our findings might explain the pleiotropic and site-dependent effects of pesticides.

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A807-A807
Author(s):  
Stanley Andrisse ◽  
Jessie Myer ◽  
Dilip “Bobby” Bogle ◽  
Nicole Eregha ◽  
Taylor Lofton

Abstract Hyperandrogenemia (HA) and insulin resistance are hallmarks of polycystic ovary syndrome (PCOS). These hallmarks are also integral elements of non-alcoholic fatty liver disease (NALFD). Administering low dose dihydrotestosterone (DHT) induced a lean PCOS-like female mouse model. The molecular mechanism of HA-induced NAFLD has not been determined. We hypothesized that low dose DHT would interrupt hepatic lipid metabolism leading to NAFLD. We extracted white adipose tissue (WAT), liver, and skeletal muscle from control and low dose DHT female mice; and performed histological and biochemical lipid profiles, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver and WAT compared to controls. However, DHT did not alter the levels of the active and inactive forms of SREBP2 in the liver and WAT. DHT increased SCAP protein expression and SCAP-SREBP1 binding via AR binding to intron-8 of SCAP leading to increased SCAP mRNA. FAS mRNA and protein expression was increased in liver of DHT mice. p-ACC levels were unaltered in liver but decreased in WAT. Other lipid metabolism pathways were examined in liver and WAT, but no changes were observed. Our findings suggest that DHT increased de novo lipogenic proteins resulting in increased NAFLD via regulation of SREBP1 in liver. We show that in the presence of DHT the SCAP-SREBP1 interaction is elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. We propose that the mechanism of action is increased AR binding to an ARE in SCAP intron-8.


2021 ◽  
Author(s):  
Tina Seidu ◽  
Patrick McWhorter ◽  
Jessie Myer ◽  
Rabita Alamgir ◽  
Nicole Eregha ◽  
...  

Hyperandrogenemia (HA) is a hallmark of polycystic ovary syndrome (PCOS) and is an integral element of nonalcoholic fatty liver disease (NALFD) in females. Administering low dose dihydrotestosterone (DHT) induced a normal weight PCOS-like female mouse model displaying NAFLD. The molecular mechanism of HA-induced NAFLD has not been fully determined. We hypothesized that DHT would regulate hepatic lipid metabolism via increased SREBP1 expression leading to NAFLD. We extracted liver from control and low dose DHT female mice; and performed histological and biochemical lipid pro-files, Western blot, immunoprecipitation, chromatin immunoprecipitation, and real-time quantitative PCR analyses. DHT lowered the 65 kD form of cytosolic SREBP1 in the liver compared to controls. However, DHT did not alter the levels of SREBP2 in the liver. DHT mice displayed increased SCAP protein expression and SCAP-SREBP1 binding compared to controls. DHT mice exhibited increased AR binding to intron-8 of SCAP leading to increased SCAP mRNA compared to controls. FAS mRNA and protein expression was increased in liver of DHT mice compared to controls. p-ACC levels were unaltered in liver. Other lipid metabolism pathways were examined in liver, but no changes were observed. Our findings support evidence that DHT increased de novo lipogenic proteins resulting in increased hepatic lipid content via regulation of SREBP1 in liver. We show that in the presence of DHT the SCAP-SREBP1 interaction was elevated leading to increased nuclear SREBP1 resulting in increased de novo lipogenesis. We propose that the mechanism of action may be increased AR binding to an ARE in SCAP intron-8.


Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.


2016 ◽  
Vol 04 (01) ◽  
pp. 4-10

AbstractImmunosuppression permits graft survival after transplantation and consequently a longer and better life. On the other hand, it increases the risk of infection, for instance with cytomegalovirus (CMV). However, the various available immunosuppressive therapies differ in this regard. One of the first clinical trials using de novo everolimus after kidney transplantation [1] already revealed a considerably lower incidence of CMV infection in the everolimus arms than in the mycophenolate mofetil (MMF) arm. This result was repeatedly confirmed in later studies [2–4]. Everolimus is now considered a substance with antiviral properties. This article is based on the expert meeting “Posttransplant CMV infection and the role of immunosuppression”. The expert panel called for a paradigm shift: In a CMV prevention strategy the targeted selection of the immunosuppressive therapy is also a key element. For patients with elevated risk of CMV, mTOR inhibitor-based immunosuppression is advantageous as it is associated with a significantly lower incidence of CMV events.


Author(s):  
Charlotte Scott

Beginning with an exploration of the role of the child in the cultural imagination, Chapter 1 establishes the formative and revealing ways in which societies identify themselves in relation to how they treat their children. Focusing on Shakespeare and the early modern period, Chapter 1 sets out to determine the emotional, symbolic, and political registers through which children are depicted and discussed. Attending to the different life stages and representations of the child on stage, this chapter sets out the terms of the book’s enquiry: what role do children play in Shakespeare’s plays; how do we recognize them as such—age, status, parental dynamic—and what are the effects of their presence? This chapter focuses on how the early moderns understood the child, as a symbolic figure, a life stage, a form of obligation, a profound bond, and an image of servitude.


2004 ◽  
Vol 52 (Suppl 1) ◽  
pp. S122.6-S123
Author(s):  
M. Garg ◽  
C. Bell ◽  
L. Rogers ◽  
S. Bassilian ◽  
W. N.P. Lee

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Feifei Zhang ◽  
Hui Wang ◽  
Jiang Yu ◽  
Xueqing Yao ◽  
Shibin Yang ◽  
...  

AbstractDe novo and acquired resistance, which are mainly mediated by genetic alterations, are barriers to effective routine chemotherapy. However, the mechanisms underlying gastric cancer (GC) resistance to chemotherapy are still unclear. We showed that the long noncoding RNA CRNDE was related to the chemosensitivity of GC in clinical samples and a PDX model. CRNDE was decreased and inhibited autophagy flux in chemoresistant GC cells. CRNDE directly bound to splicing protein SRSF6 to reduce its protein stability and thus regulate alternative splicing (AS) events. We determined that SRSF6 regulated the PICALM exon 14 skip splice variant and triggered a significant S-to-L isoform switch, which contributed to the expression of the long isoform of PICALM (encoding PICALML). Collectively, our findings reveal the key role of CRNDE in autophagy regulation, highlighting the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC.


Author(s):  
Michael Heuser ◽  
B. Douglas Smith ◽  
Walter Fiedler ◽  
Mikkael A. Sekeres ◽  
Pau Montesinos ◽  
...  

AbstractThis analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395–1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038.


Sign in / Sign up

Export Citation Format

Share Document