scholarly journals Cellular basis for paracrine regulation of ovarian follicle development

Reproduction ◽  
2001 ◽  
pp. 647-653 ◽  
Author(s):  
DF Albertini ◽  
CM Combelles ◽  
E Benecchi ◽  
MJ Carabatsos

Paracrine factors secreted by oocytes and somatic cells regulate many important aspects of early ovarian follicle development in mammals. From activation of dormant primordial follicles to selection of secondary follicles, locally acting factors have been identified that appear to exert important effects on the growth and differentiation of oocytes and granulosa cells. This article summarizes evidence to support a model for bi-directional paracrine communication that is based on developmental regulation of the delivery and reception of paracrine factors at the oocyte-granulosa cell interface. Transzonal projections that originate from granulosa cells and terminate at the oocyte plasma membrane provide a polarized means to orient the secretory organelles of somatic cells. Characterization of transzonal projections in follicles from normal and genetically modified mice reveals dynamic changes in the density and stability of transzonal projections. On the basis of new data analysing the orientation and cytoskeletal content of transzonal projections in mammalian oocytes, a model is proposed for regulation of paracrine growth factor secretion by follicle-stimulating hormone. These findings have immediate implications for ovarian hyperstimulation protocols and follicle culture models as related to the production of mammalian embryos by assisted reproductive technologies.

2009 ◽  
Vol 21 (9) ◽  
pp. 108
Author(s):  
R. A. Keightley ◽  
B. Nixon ◽  
S. D. Roman ◽  
D. L. Russell ◽  
R. L. Robker ◽  
...  

Follicular development requires the recruitment of primordial follicles into the growing follicle pool following initiation of multiple cytokine signalling pathways. Suppression of follicular development is thought to be key to maintaining the population of primordial follicles and allowing for controlled release of these follicles throughout the reproductive lifespan of the female. However, little is known of the processes and signalling molecules that suppress primordial follicle activation and early follicle growth. Our group has identified significant upregulation of the Janus Kinase 2 (JAK2)/ Signal Transducer and Activator of Transcription 3 (STAT3) signalling pathway inhibitor the Suppressor of Cytokine Signalling 4 (SOCS4) that coincides with the initial wave of follicular activation in theneonatal mouse ovary. Further studies by our group have localised the SOCS4 protein to the granulosa cells of activating and growing follicles, suggesting SOCS4 expression may be linked to follicular activation. We have focused on examining protein localisation and gene expression patterns of the eight SOCS family members CIS and SOCS1-7. We have recently demonstrated that co-culture of neonatal ovaries with Kit Ligand (KL) for 2 days increases the mRNA levels of all SOCS genes. We also demonstrated the co-localisation of SOCS2 proteins with the KL receptor c-kit in the mural granulosa cells of antral, and large pre-antral follicles suggesting a significant role for SOCS2 in the later stages of follicular development. We have also shown that culturing ovaries with the potent JAK2 inhibitor AG490 substantially reduces mRNA levels of all SOCS and STAT genes that we have so far measured. We hypothesise a significant role for JAK2/STAT3 signalling in promoting the activation and early growth of ovarian follicles. Our investigations have identified significant roles for JAK2/STAT3 and the SOCS family in the regulation of ovarian follicle development.


2019 ◽  
Vol 33 (9) ◽  
pp. 10049-10064 ◽  
Author(s):  
Xiangmin Lv ◽  
Chunbo He ◽  
Cong Huang ◽  
Hongbo Wang ◽  
Guohua Hua ◽  
...  

Reproduction ◽  
2013 ◽  
Vol 146 (3) ◽  
pp. 273-282 ◽  
Author(s):  
S N Schauer ◽  
S D Sontakke ◽  
E D Watson ◽  
C L Esteves ◽  
F X Donadeu

Previous evidence fromin vitrostudies suggests specific roles for a subset of miRNAs, including miR-21, miR-23a, miR-145, miR-503, miR-224, miR-383, miR-378, miR-132, and miR-212, in regulating ovarian follicle development. The objective of this study was to determine changes in the levels of these miRNAs in relation to follicle selection, maturation, and ovulation in the monovular equine ovary. In Experiment 1, follicular fluid was aspirated during ovulatory cycles from the dominant (DO) and largest subordinate (S) follicles of an ovulatory wave and the dominant (DA) follicle of a mid-cycle anovulatory wave (n=6 mares). Follicular fluid levels of progesterone and estradiol were lower (P<0.01) in S follicles than in DO follicles, whereas mean levels of IGF1 were lower (P<0.01) in S and DA follicles than in DO follicles. Relative to DO and DA follicles, S follicles had higher (P≤0.01) follicular fluid levels of miR-145 and miR-378. In Experiment 2, follicular fluid and granulosa cells were aspirated from dominant follicles before (DO) and 24 h after (L) administration of an ovulatory dose of hCG (n=5 mares/group). Relative to DO follicles, L follicles had higher follicular fluid levels of progesterone (P=0.05) and lower granulosa cell levels ofCYP19A1andLHCGR(P<0.005). Levels of miR-21, miR-132, miR-212, and miR-224 were increased (P<0.05) in L follicles; this was associated with reduced expression of the putative miRNA targets,PTEN,RASA1, andSMAD4. These novel results may indicate a physiological involvement of miR-21, miR-145, miR-224, miR-378, miR-132, and miR-212 in the regulation of cell survival, steroidogenesis, and differentiation during follicle selection and ovulation in the monovular ovary.


Reproduction ◽  
2013 ◽  
Vol 146 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Yexia Li ◽  
Yujie Jin ◽  
Yuxia Liu ◽  
Chunyan Shen ◽  
Jingxia Dong ◽  
...  

The function of Smad3, a downstream signaling protein of the transforming growth factor β (TGFβ) pathway, in ovarian follicle development remains to be elucidated. The effects of Smad3 on ovarian granulosa cells (GCs) in rat were studied. Female rats (21 days of age Sprague–Dawley) received i.p. injections of pregnant mare serum gonadotropin, and GCs were harvested for primary culture 48 h later. These cells were engineered to overexpress or knockdown Smad3, which were validated by immunohistochemistry and western blot. The expression of proliferating cell nuclear antigen (PCNA), cyclin D2, TGFβ receptor II (TGFβRII), protein kinase A (PKA), and FSH receptor (FSHR) was also detected by western blotting. Cell cycle and apoptosis of GCs were assayed by flow cytometry. The level of estrogen secreted by GCs was detected by ELISA. Smad3 overexpression promoted estrogen production and proliferation while inhibiting apoptosis of GCs. Reduction in Smad3 by RNAi resulted in reduced estrogen production and proliferation and increased apoptosis of GCs. Manipulation of Smad3 expression also resulted in changes in FSHR and PKA expression, suggesting that the effects of Smad3 on follicle development are related to FSHR-mediated cAMP signaling.


2019 ◽  
Author(s):  
Beatriz Peñalver Bernabé ◽  
Teresa Woodruff ◽  
Linda J Broadbelt ◽  
Lonnie D Shea

SUMMARYReliably producing a competent oocyte entails a deeper comprehension of ovarian follicle maturation, a very complex process that includes meiotic maturation of the female gamete, the oocyte, together with the mitotic divisions of the hormone-producing somatic cells. In this report, we investigate mice ovarian folliculogenesis in vivo using publically available time-series microarrays from primordial to antral stage follicles. Manually curated protein interaction networks were employed to identify autocrine and paracrine signaling between the oocyte and the somatic cells (granulosa and theca cells) and the oocyte and cumulus and mural cells at multiple stages of follicle development. We established protein binding interactions between expressed genes that encoded secreted factors and expressed genes that encoded cellular receptors. Some of computationally identified signaling interactions are well established, such as the paracrine signaling from the oocyte to the somatic cells through the secreted oocyte growth factor Gdf9; while others are novel connections in term of ovarian folliculogenesis, such as the possible paracrine connection from somatic secreted factor Ntn3 to the oocyte receptor Neo1. Additionally, we identify several of the likely transcription factors that might control the dynamic transcriptome during ovarian follicle development, noting that the YAP/TAP signaling is very active in vivo. This novel dynamic model of signaling and regulation can be employed to generate testable hypotheses regarding follicle development, guide the improvement of culture media to enhance in vitro ovarian follicle maturation and possibly as novel therapeutic targets for reproductive diseases.


Reproduction ◽  
2014 ◽  
Vol 148 (3) ◽  
pp. 321-331 ◽  
Author(s):  
Amanda Feeney ◽  
Eric Nilsson ◽  
Michael K Skinner

An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.


2018 ◽  
Vol 25 (9) ◽  
pp. 1686-1701 ◽  
Author(s):  
Zhongshuai Sun ◽  
Hui Zhang ◽  
Xi Wang ◽  
Qiao-Chu Wang ◽  
Chuanchao Zhang ◽  
...  

2018 ◽  
Author(s):  
Michele R. Plewes ◽  
Xiaoying Hou ◽  
Pan Zhang ◽  
Jennifer Wood ◽  
Andrea Cupp ◽  
...  

ABSTRACTYes-associated protein (YAP) is one of the major components of the Hippo signaling pathway, also known as the Salvador/Warts/Hippo (SWH) pathway. Although the exact extracellular signal that controls the Hippo pathway is currently unknown, increasing evidence supports a critical role of the Hippo pathway in embryonic development, regulation of organ size, and carcinogenesis. The ovary is one of few adult tissues that exhibit cyclical changes. Ovarian follicles, the basic units of ovary, are composed of a single oocyte surrounded by expanding layers of granulosa and theca cells. Granulosa cells (GCs) produce sex steroids and growth factors, which facilitate the development of the follicle and maturation of the oocyte. It has been reported that YAP is highly expressed in human GC tumors, but the role of YAP in normal ovarian follicle development is largely unknown. In current study, we examined YAP expression in bovine ovaries. We demonstrate that downstream hippo signaling effector protein, YAP and transcription co-activator, TAZ, are present and localization of both YAP and TAZ are density-dependent. Likewise, YAP and TAZ are critically involved in granulosa cell proliferation. Furthermore, reducing YAP in granulosa cells inhibits FSH-induced aromatase expression and estradiol biosynthesis. The data suggest that YAP plays an important role in the development of ovarian follicles and estradiol synthesis, which are necessary for maintaining normal ovarian function.


2014 ◽  
Vol 46 (19) ◽  
pp. 735-745 ◽  
Author(s):  
A. E. Zielak-Steciwko ◽  
J. A. Browne ◽  
P. A. McGettigan ◽  
M. Gajewska ◽  
M. Dzięcioł ◽  
...  

Development of ovarian follicles is controlled at the molecular level by several gene products whose precise expression leads to regression or ovulation of follicles. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression through sequence-specific base pairing with target messenger RNAs (mRNAs) causing translation repression or mRNA degradation. The aim of this study was to identify miRNAs expressed in theca and/or granulosa layers and their putative target genes/pathways that are involved in bovine ovarian follicle development. By using miRCURY microarray (Exiqon) we identified 14 and 49 differentially expressed miRNAs ( P < 0.01) between dominant and subordinate follicles in theca and granulosa cells, respectively. The expression levels of four selected miRNAs were confirmed by qRT-PCR. To identify target prediction and pathways of differentially expressed miRNAs we used Union of Genes option in DIANA miRPath v.2.0 software. The predicted targets for these miRNAs were enriched for pathways involving oocyte meiosis, Wnt, TGF-beta, ErbB, insulin, P13K-Akt, and MAPK signaling pathways. This study identified differentially expressed miRNAs in the theca and granulosa cells of dominant and subordinate follicles and implicates them in having important roles in regulating known molecular pathways that determine the fate of ovarian follicle development.


Sign in / Sign up

Export Citation Format

Share Document