scholarly journals Expression of caspase-2, -3, -8 and -9 proteins and enzyme activity in the corpus luteum of the rat at different stages during the natural estrous cycle

Reproduction ◽  
2006 ◽  
Vol 132 (3) ◽  
pp. 465-475 ◽  
Author(s):  
Marina C Peluffo ◽  
Leonardo Bussmann ◽  
Richard L Stouffer ◽  
Marta Tesone

Apoptosis is associated with the regression of the corpus luteum (CL) in many species. Since caspases play a central role in apoptosis, we studied several initiators (-2, -8, and -9) and the main effector (-3) caspase in the CL during the estrous cycle of the rat. Two different populations of CL (old and new) were identified on ovaries at estrus and diestrus II (DII). Diminished (P< 0.05) luteal progesterone content and P450scc levels suggested that functional luteolysis occurred between the new CL at DII and old CL at estrus, whereas the decline (P< 0.05) in luteal weight indicated that structural regression was occurring between old CL at estrus to DII. Immunostaining for caspase-2 in luteal and endothelial cells appeared to increase as the luteal phase progressed, peaking at DII in the old CL. However, caspase-8 and -9 immunostaining showed little change with a slight increase at estrus in the old population. Notably, caspase-3 staining appeared to peak at DII in the new CL. Enzyme activity of caspase-9 increased (P< 0.05) in the new CL at DII, followed by that of caspase-2 and -3 in old CL at estrus. Caspase-8 activity did not change at any stage. The number of apoptotic cells increased at DII in the old CL. These results suggest an important role for this protease family during early events of luteolysis in the rat estrous cycle.

2020 ◽  
Author(s):  
Chuan Yu ◽  
Fuyu Du ◽  
Chunjie Zhang ◽  
Yinju Li ◽  
Chengshui Liao ◽  
...  

Abstract Background: Salmonella enterica serovar Typhimurium ( S. Typhimurium) is an important infectious disease pathogen that can survive and replicate in macrophages. Glycolysis is essential for immune responses against S. Typhimurium infection in macrophages, and is also associated with apoptosis. S. Typhimurium secreted effector K3 (SseK3) was recently identified as a novel translated and secreted protein. However, there is no study about the role of sseK3 in the relationship between apoptosis and glycolysis in cells infected with S. Typhimurium. It is unclear whether this protein exerts a significant role in the progress of apoptosis and glycolysis in S. Typhimurium-infected macrophages. Results: Macrophages were infected with S. Typhimurium SL1344 wild-type (WT), Δ sseK3 mutant or sseK3 -complemented strain, and the effects of sseK3 on apoptosis and glycolysis were determined. The adherence and invasion in the Δ sseK3 mutant group were similar to that in the WT and sseK3 -complemented groups, indicating that SseK3 was not essential for the adherence and invasion of S. Typhimurium in macrophages. However, the percentage of apoptosis in the Δ sseK3 mutant group was much lower than that in the WT and sseK3 -complemented groups. Caspase-3, caspase-8, and caspase-9 enzyme activity in the Δ sseK3 mutant group were significantly lower than in the WT group and sseK3 -complemented groups, indicating that sseK3 could improve the caspase-3, caspase-8, and caspase-9 enzyme activity. We also found that there were no significant differences in pyruvic acid levels between the three groups, but the lactic acid level in the Δ sseK3 mutant group was much lower than that in the WT and sseK3 -complemented groups. The ATP levels in the Δ sseK3 mutant group were remarkably higher than those in the WT and sseK3 -complemented groups. These indicated that the sseK3 enhanced the level of glycolysis in macrophages infected by S. Typhimurium. Conclusions: S. Typhimurium sseK3 is likely involved in promoting macrophage apoptosis and modulating glycolysis in macrophages. Our results could improve our understanding of the relationship between apoptosis and glycolysis in macrophages induced by S. Typhimurium sseK3 .


2020 ◽  
Author(s):  
Chuan Yu ◽  
Fuyu Du ◽  
Chunjie Zhang ◽  
Yinju Li ◽  
Chengshui Liao ◽  
...  

Abstract Background: Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important infectious disease pathogen that can survive and replicate in macrophages. Glycolysis is essential for immune responses against S. Typhimurium infection in macrophages, and is also associated with apoptosis. S. Typhimurium secreted effector K3 (SseK3) was recently identified as a novel translated and secreted protein. However, there is no study about the role of sseK3 in the relationship between apoptosis and glycolysis in cells infected with S. Typhimurium. It is unclear whether this protein exerts a significant role in the progress of apoptosis and glycolysis in S. Typhimurium-infected macrophages.Results: Macrophages were infected with S. Typhimurium SL1344 wild-type (WT), ΔsseK3 mutant or sseK3-complemented strain, and the effects of sseK3 on apoptosis and glycolysis were determined. The adherence and invasion in the ΔsseK3 mutant group were similar to that in the WT and sseK3-complemented groups, indicating that SseK3 was not essential for the adherence and invasion of S. Typhimurium in macrophages. However, the percentage of apoptosis in the ΔsseK3 mutant group was much lower than that in the WT and sseK3-complemented groups. Caspase-3, caspase-8, and caspase-9 enzyme activity in the ΔsseK3 mutant group were significantly lower than in the WT group and sseK3-complemented groups, indicating that sseK3 could improve the caspase-3, caspase-8, and caspase-9 enzyme activity. We also found that there were no significant differences in pyruvic acid levels between the three groups, but the lactic acid level in the ΔsseK3 mutant group was much lower than that in the WT and sseK3-complemented groups. The ATP levels in the ΔsseK3 mutant group were remarkably higher than those in the WT and sseK3-complemented groups. These indicated that the sseK3 enhanced the level of glycolysis in macrophages infected by S. Typhimurium.Conclusions: S. Typhimurium sseK3 is likely involved in promoting macrophage apoptosis and modulating glycolysis in macrophages. Our results could improve our understanding of the relationship between apoptosis and glycolysis in macrophages induced by S. Typhimurium sseK3.


1999 ◽  
Vol 19 (14) ◽  
pp. 5932-5941 ◽  
Author(s):  
James J. Velier ◽  
Julie A. Ellison ◽  
Kristine K. Kikly ◽  
Patricia A. Spera ◽  
Frank C. Barone ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Nabilah Muhammad Nadzri ◽  
Ahmad Bustamam Abdul ◽  
Mohd Aspollah Sukari ◽  
Siddig Ibrahim Abdelwahab ◽  
Eltayeb E. M. Eid ◽  
...  

Zerumbone (ZER) isolated fromZingiber zerumbetwas previously encapsulated with hydroxypropyl-β-cyclodextrin (HPβCD) to enhance ZER’s solubility in water, thus making it highly tolerable in the human body. The anticancer effects of this new ZER-HPβCD inclusion complex via apoptosis cell death were assessed in this study for the first time in liver hepatocellular cells, HepG2. Apoptosis was ascertained by morphological study, nuclear stain, and sub-G1 cell population accumulation with G2/M arrest. Further investigations showed the release of cytochrome c and loss of mitochondrial membrane potential, proving mitochondrial dysfunction upon the ZER-HPβCD treatment as well as modulating proapoptotic and anti-apototic Bcl-2 family members. A significant increase in caspase 3/7, caspase 9, and caspase 8 was detected with the depletion of BID cleaved by caspase 8. Collectively, these results prove that a highly soluble inclusion complex of ZER-HPβCD could be a promising anticancer agent for the treatment of hepatocellular carcinoma in humans.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinlu Wang ◽  
Xuanxuan Hao ◽  
Youping Wang ◽  
Bin Li ◽  
Lin Cui ◽  
...  

Shenfuyixin granule (SFYXG, i.e., Xinshuaikang granule) is a prescription, commonly used in the clinical experience, which plays a significant role in the treatment of heart failure. The purpose of this present research was to investigate the protective effect of SFYXG, and the mechanism about anti-H2O2-induced oxidative stress and apoptosis in the neonatal rat cardiomyocytes. Myocardial cells, as is well known, were divided into 4 groups: normal, model, SFYXG, and coenzyme Q10 group, respectively. Cells viability was determined by MTT assay. Flow cytometry and AO/EB staining were implemented to test the apoptosis rate and intracellular reactive oxygen species (ROS) level. Mitochondrion membrane potential (MMP) was evaluated by JC-1 fluorescence probe method. The myocardial ultrastructure of mitochondrion was measured by electron microscope. The related mRNA expression levels of Bax, Bcl-2, Caspase-3, caspase-8, and caspase-9 were detected by real-time polymerase chain reaction (PCR). Also, the expression levels of Bax and Bcl-2 protein were detected by Western blot, and the expression levels of caspase-3, caspase-8, and caspase-9 protein were tested by caspase-Glo®3 Assay, caspase-Glo®8 Assay, and caspase-Glo®9 Assay, respectively. GAPDH was used as the internal reference gene/protein. The results revealed that SFYXG (0.5 mg/ml) raised the viability of myocardial cell, weakened the apoptosis rate and ROS level, corrected the mitochondrion membrane potential stability, and improved cell morphology and ultrastructure of myocardial mitochondrion. Furthermore, SFYXG upregulated the antiapoptosis gene of Bcl-2, but downregulated the proapoptosis genes of Bax, caspase-3, and caspase-9. In conclusion, SFYXG could appear to attenuate myocardial injury by its antioxidative and antiapoptosis effect.


2021 ◽  
Author(s):  
Amir Saber ◽  
Nasim Abedimanesh ◽  
Mohammad-Hossein Somi ◽  
Ahmad Yari Khosroushahi

Abstract Background: Colorectal cancer (CRC) is the third most common type of cancer worldwide. Fruit and vegetables have some active compounds such as flavonoids and polyphenols that protect against malignancies through their antioxidative, anti-inflammatory, anti-proliferative, neuro, and hepatoprotective properties. Red beetroot (Beta vulgaris) contains red (betacyanins) and yellow (betaxanthins) pigments known as betalains. Betanin makes up 75-95% of the total betacyanins, possessed a wide range of favorable biological effects such as chemopreventive, anticarcinogenic, anti-tumorogenic, antiangiogenic, and proapoptotic effects. Methods: Red beetroot hydro-alcoholic extract and betanin were used to treat Caco-2 and HT-29 colorectal cancer cells, as well as KDR/293 normal epithelial cells. The half-maximal inhibitory concentration (IC50) was determined by prescreening MTT tests in the range of 20 to 140 µg/ml at 24 and 48 h. The cytotoxicity and apoptosis-inducing evaluations were performed via MTT assay, DAPI staining, and FACS-flow cytometry tests using determined times and doses. Moreover, the expression level of six important genes involving in the apoptosis pathway (Bcl-2, BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) were determined using the real-time polymerase chain reaction (RT-PCR) method.Results: The IC50 doses for HT-29 and Caco-2 cell lines were determined to be about 92 μg/mL, 107 μg/mL for beetroot hydro-alcoholic extract, and 64 μg/mL, 90 μg/mL for betanin at 48 h, respectively. Our findings showed that beetroot extract and betanin significantly inhibit the growth of HT-29 and Caco-2 cell lines, time and dose-dependently, without considerable adverse effects on KDR/293 normal cells. Moreover, DAPI staining and flow cytometry results revealed significant apoptosis symptoms in treated cancerous cell lines. The expression level of pro-apoptotic genes involved in intrinsic and extrinsic apoptosis pathways (BAD, Caspase-3, Caspase-8, Caspase-9, and Fas-R) in treated HT-29 and Caco-2 cells was higher than untreated and normal cells, whereas the anti-apoptotic gene (Bcl-2) was downregulated. Conclusion: Beetroot hydro-alcoholic extract and betanin significantly inhibited cell proliferation and induced cell apoptosis (intrinsic and extrinsic pathways) via modification of effective genes in both colorectal cancer cell lines with no significant cytotoxic effects on KDR/293 normal cells. The mechanism of the anticancer effects of red beetroot extract and betanin needs to be further studied.


1996 ◽  
Vol 76 (3) ◽  
pp. 463-464 ◽  
Author(s):  
W. A. Cerbito ◽  
M. P. B. Wijayagunawardane ◽  
M. Takagi ◽  
K. Sato ◽  
A. Miyamoto ◽  
...  

Bovine uterine horns with both ovaries containing a corpus luteum (CL) were compared for progesterone (P4) and oxytocin (OT) concentrations during the luteal phase of the estrous cycle. Uterine tissue samples from five Holstein cows with bilateral CL obtained from the slaughterhouse were used for this study. No significant difference was observed in P4 and OT levels in the right and left horns with corpora lutea in both ovaries. The data clearly indicate that both sides of the uterine horn having a functional CL are exposed to similar levels of P4 and OT, supporting the hypothesis that luteal products are delivered locally to the uterus. Key words: Progesterone, oxytocin, uterine horn, bilateral, corpus luteum, cow


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3415-3415
Author(s):  
Paul J. Shami ◽  
Vidya Udupi ◽  
Margaret Yu ◽  
Swati Malaviya ◽  
Joseph E. Saavedra ◽  
...  

Abstract NO induces differentiation and apoptosis in Acute Myelogenous Leukemia (AML) cells. Glutathione S-Transferases (GST) play an important role in multidrug resistance and are upregulated in 90% of AML cells. We have designed a novel prodrug class that releases NO on metabolism by GST. O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent antileukemic activity. We have previously shown that JS-K induces apoptosis in HL-60 cells by a caspase dependent mechanism (Molecular Cancer Therapeutics2:409-417,2003). The purpose of this study was to determine the pathway through which JS-K induces apoptosis. Western blot analysis showed that treatment of HL-60 cells with JS-K (0 – 1 μM) for 6 hours results in release of Cytochrome c from mitochondria in a dose dependent fashion. Treatment with JS-K resulted in a dose dependent activation of Caspase 9. Sixteen and 24 hours after exposure to 1 μM JS-K, Caspase 9 activity was induced by 393 ± 93% and 237 ± 13% of control, respectively (p = 0.03 at the 24 hours time point). Treatment with JS-K resulted in a dose dependent activation of Caspase 3. Twenty four hours after exposure to 1 μM JS-K, Caspase 3 activity was 208 ± 3.4 % of control (p = 0.02). Treatment with JS-K also resulted in a dose dependent activation of Caspase 8, but to a lesser extent than Caspase 9 and 3. Twenty four hours after exposure to 1 μM JS-K, Caspase 8 activity was 144 ± 5.3 % of control (p = 0.04). We conclude that JS-K activates the intrinsic pathway of apoptosis in leukemia cells by inducing the release of Cytochrome c from mitochondria. (NO1-CO-12400).


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2177-2177
Author(s):  
Duncan H Mak ◽  
Christa Manton ◽  
Michael Andreeff ◽  
Bing Z Carter

Abstract Abstract 2177 The antiapoptotic function of the inhibitors of apoptosis family of proteins (IAPs) is antagonized by mitochondria-released SMAC protein. The IAP-member XIAP suppresses apoptosis by directly binding and inhibiting caspase-9 and caspase-3, while cIAP1, a component of the cytoplasmic signaling complex containing TNF receptor associated factors, suppresses apoptosis via the caspase-8-mediated pathway. BV-6 (Genentech) is a bivalent SMAC-mimetic and has been shown to promote cell death by inducing cIAP autoubiquitination, NF-κB activation, and TNFα-dependent apoptosis. We examined its effect on leukemic cells and found that BV-6 only moderately induced apoptosis. The EC50 was found to be 15.3±5.1 μM at 48 hours in OCI-AML3 cells which are relatively sensitive. We then determined whether BV-6 sensitizes leukemic cells to the HDM2-inhibitor nutlin-3a and to Ara-C. p53 modulates the expression and activity of Bcl-2 family proteins and promotes the mitochondrial-mediated apoptosis. We showed previously that activation of p53 by nutlin-3a sensitizes AML cells to XIAP inhibition induced-death in part by promoting the release of SMAC from mitochondrion (Carter BZ et al., Blood 2010). We treated OCI-AML3 cells with BV-6, nutlin-3a or Ara-C, and BV-6+nutlin-3a or BV-6+Ara-C and found that the combination of BV-6 and nutlin-3a or BV-6 and Ara-C synergistically induced cell death in OCI-AML3 cells with a combination index (CI) of 0.27±0.11 and 0.22±0.05 (48 hours), respectively. To demonstrate that p53 activation is essential for the synergism of BV-6+nutlin-3a combination, we treated OCI-AML3 vector control and p53 knockdown cells with these two agents and found that the combination synergistically promoted cell death in the vector control (CI=0.47±0.15) but not in the p53 knockdown cells, as expected, while BV6+Ara-C was synergistic in both vector control and p53 knockdown cells (CI=0.15±0.03 and 0.08±0.03, respectively, 48 hours). BV-6 induced activation of caspase-8, caspase-9, and caspase-3 and decreased XIAP levels, but did not cause rapid cIAP1 degradation, as reported by others. To assess the contribution of death receptor-mediated apoptosis in BV-6-induced cell death, we treated Jurkat and caspase-8 mutated Jurkat cells (JurkatI9.2) with BV-6 and found that BV-6 induced cell death and significantly potentiated TRAIL-induced apoptosis in Jurkat cells (CI=0.14±0.08, 48 hours). Caspase-8 mutated JurkatI9.2 cells were significantly less sensitive to BV-6 than Jurkat cells and as expected, JurkatI9.2 was completely resistant to TRAIL. Collectively, we showed that the bivalent SMAC-mimetic BV-6 potentiates p53 activation-, chemotherapy-, and TRAIL-induced cell death, but has only minimal activity by itself in leukemic cells. SMAC-mimetics could be useful in enhancing the efficacy of different classes of therapeutic agents used in AML therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 330-330
Author(s):  
Antonia Cagnetta ◽  
Michele Cea ◽  
Chirag Acharya ◽  
Teresa Calimeri ◽  
Yu-Tzu Tai ◽  
...  

Abstract Abstract 330 Background: Our previous study demonstrated that inhibition of nicotinamide phosphoribosyltransferase (Nampt) acts by severely depleting intracellular NAD+ content and thus eliciting mitochondrial dysfunction and autophagic MM cell death. The proteasome inhibitor Bortezomib induces anti-MM activity by affecting a variety of signaling pathways. However, as with other agents, dose-limiting toxicities and the development of resistance limit its long-term utility. Here, we demonstrate that combining Nampt inhibitor and bortezomb induces synergistic anti-MM cell death both in vitro using MM cell lines or patient CD138+ MM cells and in vivo in a human plasmacytoma xenograft mouse model. Material and Methods: We utilized MM.1S, MM.1R, RPMI-8226, and U266 human MM cell lines, as well as purified tumor cells from patients relapsing after prior therapies. Cell viability and apoptosis assays were performed using Annexin V/PI staining. Intracellular NAD+ level and proteasome activity were quantified after 12, 24, and 48h exposure to single/combination drugs by specific assays. In vitro angiogenesis was assessed by Matrigel capillary-like tube structure formation assay. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, PARP, Bcl-2, and tubulin. CB-17 SCID male mice (n = 28; 7 mice/EA group) were subcutaneously inoculated with 5.0 × 106 MM.1S cells in 100 microliters of serum free RPMI-1640 medium. When tumors were measurable (3 weeks after MM cell injection), mice were treated for three weeks with vehicle alone, FK866 (30mg/kg 4 days weekly), Bortezomib (0.5 mg/kg twice weekly), or FK866 (30 mg/kg) plus Bortezomib (0.5 mg/kg). Statistical significance of differences observed in FK866, Bortezomib or combination-treated mice was determined using a Student t test. Isobologram analysis was performed using “CalcuSyn” software program. A combination index < 1.0 indicates synergism. Results/Discussion: Combining FK866 and Bortezomib induces synergistic anti-MM activity in vitro against MM cell lines (P<0.005, CI < 1) or patient CD138-positive MM cells (P< 0.004). FK866 plus Bortezomib-induced synergistic effect is associated with: 1)activation of caspase-8, caspase-9, caspase-3, and PARP; 2) improved intracellular NAD+ dissipation; 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteolytic activities; 4) inhibition of NF-kappa B signaling; and 5) inhibition of angiogenesis. Importantly, the ectopic overexpression of Nampt rescues this observed synergistic effect; conversely, Nampt knockdown by RNAi significantly enhances the anti-MM effect of bortezomib. In the murine xenograft MM model, low dose combination FK866 (30 mg/kg) and Bortezomib (0.5 mg/kg) is well tolerated, significantly inhibits tumor growth (P < 0.001), and prolongs host survival (2–2.5 months in mice receiving combined drugs, P = 0.001). These findings demonstrate that intracellular NAD+ levels represent a major determinant in the ability of bortezomib to induce apoptosis of MM cells, providing the rationale for clinical protocols evaluating FK866 together with Bortezomib to improve patient outcome in MM. Disclosures: Munshi: Celgene: Consultancy; Millenium: Consultancy; Merck: Consultancy; Onyx: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document