scholarly journals Influence of the nano-WC content and Sintering Temperature on the Phase Composition of Hard Alloys in the System TiC–WC–VC–NiCr

2020 ◽  
Vol 21 (3) ◽  
pp. 496-502
Author(s):  
S. Pukas ◽  
L. Zinko ◽  
N. German ◽  
R. Gladyshevskii ◽  
I. V. Koval ◽  
...  

The effect of the WC content and the sintering temperature, as the main technological factor, on the phase composition of TiC–xWC–5VC–18NiCr alloys was investigated by X-ray phase analysis. It was established that the main phases in the investigated alloys were the NaCl-type quaternary (Ti,V,W)C phase and a solid solution of Cr in Ni. Depending on the size of the WC particles used for the preparation, the metal binder could be described by the formula Ni0.75Cr0.25 (for nano WC) or Ni0.5Cr0.5 (for fine-sized WC). In alloys prepared with fine-sized WC, elementary Cr and traces of the Cr3C2 and Cr23C6 were also found. With increasing content of nano-sized WC and sintering temperature the solubility of W in (Ti,V)C increased. No W2C phase was detected under the conditions of the investigation.

2021 ◽  
Vol 2 ◽  
pp. 27-33
Author(s):  
M. G. Krinitcyn ◽  
◽  
I. A. Firsina ◽  
A. V. Baranovskiy ◽  
M. P. Ragulina ◽  
...  

Bulk samples from the powder of the MAX-phase Ti3AlC2 were obtained by selective laser sintering (SLS). A complex structural-phase study was carried out using optical and electron microscopy, as well as X-ray phase analysis, the elemental and phase composition of the samples was determined, and the morphology of the initial powders and bulk SLS samples was described. This study allowed to describe the elemental and phase composition, as well as the morphology of both the initial powders and bulk SLS samples. Modes of selective laser sintering are established at which the maximum presence of the MAX-phase in the samples after SLS is observed.


2021 ◽  
Vol 1016 ◽  
pp. 1790-1796
Author(s):  
Maxim Syrtanov ◽  
Egor Kashkarov ◽  
Tatyana Murashkina ◽  
Nahum Travitzky

This paper describes the influence of sintering temperature on phase composition and microstructure of paper-derived Ti3AlC2 composites fabricated by spark plasma sintering. The composites were sintered at 100 MPa pressure in the temperature range of 1150-1350 °C. Phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The multiphase structure was observed in the sintered composites consisting of Ti3AlC2, Ti2AlC, TiC and Al2O3 phases. The decomposition of the Ti3AlC2 phase into Ti2AlC and TiC carbide phases was observed with temperature rise. The total content of Ti3AlC2 and Ti2AlC phases was reduced from 84.5 vol.% (1150 °C) to 69.5 vol.% (1350 °C). The density of composites affected by both the content of TiC phase and changes in porosity.


2003 ◽  
Vol 807 ◽  
Author(s):  
A. G. Ptashkin ◽  
S. V. Stefanovsky ◽  
S. V. Yudintsev ◽  
S. A. Perevalov

ABSTRACTPu-bearing zirconolite and pyrochlore based ceramics were prepared by melting under oxidizing and reducing conditions at 1550 °C. 239Pu content in the samples ranged between ∼10 and ∼50 wt.%. Phase composition of the ceramics and Pu partitioning were studied using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). Major phases in the samples were found to be the target zirconolite and pyrochlore as well as a cubic fluorite structure oxide. Normally the Pu content in the Pu host phases was 10–12 wt.%. This corresponds to the Pu content recommended for matrices for immobilization of excess weapons plutonium. At higher Pu content (up to 50 wt.%) additional phases, such as a PuO2-based cubic fluorite-structured solid solution, perovskite, and rutile were found.


2019 ◽  
Vol 945 ◽  
pp. 617-622 ◽  
Author(s):  
V.O. Kharlamov ◽  
Aleksandr Vasilevich Krokhalev ◽  
S.V. Kuz’min ◽  
V.I. Lysak

The article reports findings on theoretically-calculated data and experimental results obtained with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy methods of the analysis of hard alloys produced by the explosive compaction of the Cr3C2 chromium carbide powders with titanium, first in the original condition and then after heating to 1200 °C. It was established that when heated to 600 °С the phase composition of hard alloys does not change and corresponds to the composition of the original components of the powder mixture. When the heating temperature was increased to 650 °С, new fine powder fractions emerged at the “chromium carbide – titanium” interface. At the temperature of 700 °С two separate diffusion layers emerged and grew in the opposite directions. Due to this growth the source phases in the alloy fully disappeared at 1200 °С and two equilibrium phases were formed.


2007 ◽  
Vol 534-536 ◽  
pp. 1129-1132
Author(s):  
Andrzej Romanski

The kinetics of sintering of Co-Fe materials was studied. The main objective of the work was to establish the effects of iron content and sintering parameters on the microstructure and phase composition of the as-sintered materials. Specimens containing from 3 to 25 wt.% iron were sintered in a dilatometer for one hour at 900, 1000 and 1150OC in either hydrogen or nitrogen atmosphere. The length of specimens during the heating, hold at the temperature and cooling steps were monitored to establish the sample’s shrinkage. Microstructural observations were carried out on polished and etched transverse sections which were also subjected to the X-ray phase analysis.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7870
Author(s):  
Anton Semikolenov ◽  
Pavel Kuznetsov ◽  
Tatyana Bobkova ◽  
Svetlana Shalnova ◽  
Olga Klimova-Korsmik ◽  
...  

In the present study, powder of FeCoCrNiMo0.5Al1.3 HEA was manufactured by gas atomization process, and then used for laser powder bed fusion (L-PBF) and microplasma spraying (MPS) technologies. The processes of phase composition and microstructure transformation during above mentioned processes and subsequent heat treatment were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and differential thermal analysis (DTA) methods. It was found that gas atomization leads to a formation of dendrites of body centered cubic (BCC) supersaturated solid solution with insignificant Mo-rich segregations on the peripheries of the dendrites. Annealing leads to an increase of element segregations till to decomposition of the BCC solid solution and formation of σ-phase and B2 phase. Microstructure and phase composition of L-PBF sample are very similar to those of the powder. The MPS coating has a little fraction of face centered cubic (FCC) phase because of Al oxidation during spraying and formation of regions depleted in Al, in which FCC structure becomes more stable. Maximum hardness (950 HV) is achieved in the powder and L-PBF samples after annealing at 600 °C. Elastic modulus of the L-PBF sample, determined by nanoindentation, is 165 GPa, that is 12% lower than that of the cast alloy (186 GPa).


1981 ◽  
pp. 253-264 ◽  
Author(s):  
G. J. McCarthy ◽  
R. C. Gehringer ◽  
D. K. Smith ◽  
V. M. Injaian ◽  
D. E. Pfoertsch ◽  
...  

2014 ◽  
Vol 59 (4) ◽  
pp. 1593-1597 ◽  
Author(s):  
D. Balga ◽  
D. Ostroushko ◽  
K. Saksl ◽  
E. Mazancová ◽  
O. Milković

Abstract In the article we analyzed shape, local mechanical properties, chemical and phase composition of Magnesium/Aluminium cladded material prepared by explosion welding. In particular we focus our investigation on Mg/Al interface and areas close to the joint. Hardness of the joined materials measured far from their interface is similar for both materials, however in the region of interface the hardness drops down by 40%. Phase transformations in the interface was examined by a hard X-ray micro-diffraction experiment performed at beamline P07 at PETRA III at the energy of 99 keV which helped us identify in Al: fcc-Al, Al2Cu tetragonal and Al7Cu2Fe tetragonal and in Mg: hcp-Mg, Mg2Si cubic phases. In the interface we haven’t observed any new intermetallics, but computation of lattice parameters and profiles of Al and Mg peaks proved an existence of solid solution with different gradient of chemical composition.


1992 ◽  
Vol 49 (9) ◽  
pp. 435-437
Author(s):  
E. M. Dyatlova ◽  
N. M. Bobkova ◽  
T. N. Yurkevich ◽  
E. M. Kurpan

Sign in / Sign up

Export Citation Format

Share Document