Spark Plasma Sintering of Paper-Derived Ti3AlC2-Based Composites: Influence of Sintering Temperature

2021 ◽  
Vol 1016 ◽  
pp. 1790-1796
Author(s):  
Maxim Syrtanov ◽  
Egor Kashkarov ◽  
Tatyana Murashkina ◽  
Nahum Travitzky

This paper describes the influence of sintering temperature on phase composition and microstructure of paper-derived Ti3AlC2 composites fabricated by spark plasma sintering. The composites were sintered at 100 MPa pressure in the temperature range of 1150-1350 °C. Phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The multiphase structure was observed in the sintered composites consisting of Ti3AlC2, Ti2AlC, TiC and Al2O3 phases. The decomposition of the Ti3AlC2 phase into Ti2AlC and TiC carbide phases was observed with temperature rise. The total content of Ti3AlC2 and Ti2AlC phases was reduced from 84.5 vol.% (1150 °C) to 69.5 vol.% (1350 °C). The density of composites affected by both the content of TiC phase and changes in porosity.

2014 ◽  
Vol 602-603 ◽  
pp. 556-560
Author(s):  
Xiao Yong Ren ◽  
Zhi Jian Peng ◽  
Hui Yong Rong ◽  
Ying Peng ◽  
Cheng Biao Wang ◽  
...  

Binderless WC-based cemented carbides with different fractions (0-9 wt.%) of ZrC nanopowder were fabricated through spark plasma sintering at 1600 °C under a uniaxial pressure of 50 MPa. The addition effect of ZrC nanopowder on the phase composition and microstructure of the fabricated materials were explored with the help of X-ray diffraction and scanning electron microscope. The results indicated that W2C phase was detected in the samples with 0-3 wt.% ZrC nanopowder, but with further increase in ZrC added fraction, ZrO2 phase instead of W2C phase was detected. The apparent density decreased gradually with the increase in added fraction of ZrC nanopowder, while the relative density increased initially and then decreased, reaching its maximum of about 98.2% when the added fraction of ZrC nanopowder was about 3 wt.%, indicating that appropriate added fraction of ZrC nanopowder can improve the densification of binderless WC cemented carbides. Without ZrC nanopowder, the coarsening and abnormal growth of WC grains were serious, resulting in many large prismatic WC grains in the samples. However, Such phenomena could be suppressed by adding ZrC nanopowder, resulting in much finer and more homogenous microstructure after 1-3 wt.% ZrC nanopowder was added. When the added fraction of ZrC nanopowder was higher than 3 wt.%, the agglomeration of ZrC nanopowder became more and more serious.


2004 ◽  
Vol 18 (01) ◽  
pp. 87-93 ◽  
Author(s):  
ZHIMIN WANG ◽  
YIDONG WU ◽  
YUANJIN HE

Crystals of MnSi 1.73 were prepared by Spark Plasma Sintering (SPS) technique, analyzed by X-ray diffraction (XRD), and invested by metalogragh and scanning electron microscopy (SEM). The growth processes of the samples were studied. It was found that the Mn–Si powders partly formed MnSi 1.73 crystals at 912–937 K under the mechanical pressure of 20 MPa in low vacuum (about 5.0 Pa), and fully formed MnSi 1.73 crystals after sintered at 1173 K for 15 minutes under 40 MPa.


2010 ◽  
Vol 654-656 ◽  
pp. 2158-2161 ◽  
Author(s):  
Eri Miura-Fujiwara ◽  
Takeshi Teramoto ◽  
Hisashi Sato ◽  
Equo Kobayashi ◽  
Yoshimi Watanabe

This study aims at producing porous Ti filled with biodegradable materials for biomedical implants by means of spark plasma sintering method (SPS). To improve bone fixation and to obtain appropriate Young’s modulus as a medical implant material, we applied -tri calcium phosphate (-TCP) to the Ti-based composite. Ti/-TCP powder mixtures were sintered by SPS under applied stress of 45MPa with various temperatures and holding time. Vickers hardness (Hv) of obtained composite increased with increasing the holding time up to 10 min, and saturated hardness was approximately 750 Hv, which is extremely higher than that of bulk Ti. Hardness also increased as sintering temperature increased up to 1473 K. From the results of microstructure observations by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDXS), O- and P- containing Ti surrounded around Ti particle, and O diffused into Ti particle to a certain extent. X-ray diffraction results indicated several kinds of Ti-O and/or Ti-P formed in the specimen. Results indicated that it is the brittle phases formed during sintering that increased the hardness.


2012 ◽  
Vol 512-515 ◽  
pp. 932-935
Author(s):  
Ying Peng ◽  
Zhi Jian Peng ◽  
Xiao Yong Ren ◽  
Hui Yong Rong ◽  
Cheng Biao Wang ◽  
...  

TiCN-based cermets with different amounts of SiC nano-whiskers were prepared by spark plasma sintering. The microstructure and mechanical properties of the as-prepared cermets were investigated. X-ray diffraction revealed that there were no SiC peaks detected, turning out some peaks of new carbide and silicate hard phases. Scanning electron microscopy indicated that there were more and more pores in the cermets with increasing amount of SiC whisker added, and the fracture mechanism of the cermets was mainly inter-granular fracture. With increasing addition amount of nano-SiC whisker, the hardness and flexural strength of the cermets increased first and decreased then, presenting the highest hardness (2170 HV) and flexural strength (750 MPa), respectively, when the addition content of nano-whiskers is 2.5 wt%.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 331 ◽  
Author(s):  
Kwangjae Park ◽  
Dasom Kim ◽  
Kyungju Kim ◽  
Seungchan Cho ◽  
Hansang Kwon

In this research, we successfully fabricate high-hardness and lightweight Al-Ti composites. Al-Ti composites powders with three compositions (Al-20, 50, and 80 vol.% Ti) are mixed using ball milling and subsequently subjected to spark plasma sintering (SPS). The microstructures and phases of the Al-Ti composites are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy, and field emission-electron probe microanalysis (FE-EPMA). These tests confirm the presence of several intermetallic compounds (ICs) (Al3Ti, Al5Ti2, Al11Ti5) in the composites, and we are able to confirm that these ICs are produced by the reaction of Al and Ti during the SPS process. Furthermore, thermogravimetric-differential thermal analysis (TG-DTA) is used to analyze the formation behavior of the ICs. In addition, the mechanical properties of the composites are measured using their Vickers hardness and it is observed that the Al-80 vol.% Ti composite exhibits the highest hardness. Consequently, it is assumed that SPS is suitable for fabricating Al-Ti composites which represent the next-generation materials to be used in various industrial fields as high-hardness and lightweight materials.


2013 ◽  
Vol 746 ◽  
pp. 220-228
Author(s):  
Jonathan C.G. Sanchez ◽  
Jose A. Andraca ◽  
David V. Jaramillo ◽  
Fernando L. Juárez

Spark plasma sintering was carried out to densify Ni-alloy doped with Pt powder at temperatures ranging between 1273 and 1323 K in order to obtain a variety of microstructures. Homogeneous distribution Pt and full densification were achieved in a short time, and the overall processing time not was exceeding 30 min via SPS process. Phase constitutions and microstructures and porosity evaluation were investigated by using scanning electron microscopy, chemical analysis and X-ray diffraction. It was found that two new phases ζ-PtAl2 and α-NiPt (Al). The set conditions are very promising from an energy-saving viewpoint; total powder consolidation was obtained per a decrease of 200 °C in the sintering temperature by using spark plasma sintering.


2017 ◽  
Vol 59 (11-12) ◽  
pp. 1033-1036 ◽  
Author(s):  
Sherzod Kurbanbekov ◽  
Mazhyn Skakov ◽  
Viktor Baklanov ◽  
Batyrzhan Karakozov

2016 ◽  
Vol 881 ◽  
pp. 307-312
Author(s):  
Luis Antonio C. Ybarra ◽  
Afonso Chimanski ◽  
Sergio Gama ◽  
Ricardo A.G. da Silva ◽  
Izabel Fernanda Machado ◽  
...  

Tungsten carbide (WC) based composites are usually produced with cobalt, but this binder has the inconvenience of shortage, unstable price and potential carcinogenicity. The objective of this study was to develop WC composite with intermetallic Fe3Al matrix. Powders of WC, iron and aluminum, with composition WC-10 wt% Fe3Al, and 0.5 wt% zinc stearate were milled in a vibration mill for 6 h and sintered in a SPS (spark plasma sintering) furnace at 1150 °C for 8 min under pressure of 30 MPa. Measured density and microstructure analysis showed that the composite had significant densification during the (low-temperature, short time) sintering, and X-ray diffraction analysis showed the formation of intermetallic Fe3Al. Analysis by Vickers indentation resulted in hardness of 11.2 GPa and fracture toughness of 24.6 MPa.m1/2, showing the feasibility of producing dense WC-Fe3Al composite with high mechanical properties using the SPS technique.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1276 ◽  
Author(s):  
Dariusz Garbiec ◽  
Volf Leshchynsky ◽  
Alberto Colella ◽  
Paolo Matteazzi ◽  
Piotr Siwak

Combining high energy ball milling and spark plasma sintering is one of the most promising technologies in materials science. The mechanical alloying process enables the production of nanostructured composite powders that can be successfully spark plasma sintered in a very short time, while preserving the nanostructure and enhancing the mechanical properties of the composite. Composites with MAX phases are among the most promising materials. In this study, Ti/SiC composite powder was produced by high energy ball milling and then consolidated by spark plasma sintering. During both processes, Ti3SiC2, TiC and Ti5Si3 phases were formed. Scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction study showed that the phase composition of the spark plasma sintered composites consists mainly of Ti3SiC2 and a mixture of TiC and Ti5Si3 phases which have a different indentation size effect. The influence of the sintering temperature on the Ti-SiC composite structure and properties is defined. The effect of the Ti3SiC2 MAX phase grain growth was found at a sintering temperature of 1400–1450 °C. The indentation size effect at the nanoscale for Ti3SiC2, TiC+Ti5Si3 and SiC-Ti phases is analyzed on the basis of the strain gradient plasticity theory and the equation constants were defined.


2010 ◽  
Vol 654-656 ◽  
pp. 819-822
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui ◽  
Yuya Takahashi ◽  
Shota Fujino

In this study, we focused on the sintering performance of Ti-4.5Al-3V-2Mo-2Fe (SP-700) and mechanical properties of SP-700 reinforced with titanium boride (TiB/SP-700) fabricated by spark plasma sintering (SPS). TiB whiskers formed in titanium by a solid-state reaction of titanium and TiB2 particles were analyzed with scanning electron microscopy and X-ray diffraction. The TiB/SP-700 was sintered at temperatures of 1073, 1173, and 1273 K and a pressure of 70 MPa for 10, 30, and 50 min. The volume fraction of TiB ranged from 1.7 vol.% to 19.9 vol.%. Tensile tests of TiB/SP-700 were conducted at room temperature, and the effect of TiB volume fraction on the tensile properties was investigated.


Sign in / Sign up

Export Citation Format

Share Document