scholarly journals Stem Cell Concept in Thyroid Cancer

2020 ◽  
Vol 7 ◽  
Author(s):  
Cihan Zamur ◽  
Uğur Topal ◽  
Harun Özdemir ◽  
Serdar Altınay

The most frequently diagnosed endocrine cancer, which causes more deaths than any other endocrine cancer, is thyroid cancer. Cancer stem cells are rare cells found in tumors that can regenerate themselves, phenotypically leads to various tumor cell populations and trigger tumorigenesis. Cancer stem cells have been identified in many cancers, including thyroid cancer. Having an understanding of the molecular mechanisms which control the biology of cancer stem cells and the disease processes will help us in designing more rational targeted therapies for aggressive thyroid cancers. In this review, we aimed to present the current accepted knowledge about thyroid stem cells, information regarding the cellular origin of thyroid cancer stem cells, and the clinical results of cancer stem cells present in the thyroid gland.

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Nathan Moore ◽  
Stephen Lyle

Long-lived cancer stem cells (CSCs) with indefinite proliferative potential have been identified in multiple epithelial cancer types. These cells are likely derived from transformed adult stem cells and are thought to share many characteristics with their parental population, including a quiescent slow-cycling phenotype. Various label-retaining techniques have been used to identify normal slow cycling adult stem cell populations and offer a unique methodology to functionally identify and isolate cancer stem cells. The quiescent nature of CSCs represents an inherent mechanism that at least partially explains chemotherapy resistance and recurrence in posttherapy cancer patients. Isolating and understanding the cell cycle regulatory mechanisms of quiescent cancer cells will be a key component to creation of future therapies that better target CSCs and totally eradicate tumors. Here we review the evidence for quiescent CSC populations and explore potential cell cycle regulators that may serve as future targets for elimination of these cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Paola Brescia ◽  
Cristina Richichi ◽  
Giuliana Pelicci

Cancer stem cells (CSCs) were isolated in multiple tumor types, including human glioblastomas, and although the presence of surface markers selectively expressed on CSCs can be used to isolate them, no marker/pattern of markers are sufficiently robust to definitively identify stem cells in tumors. Several markers were evaluated for their prognostic value with promising early results, however none of them was proven to be clinically useful in large-scale studies, leading to outstanding efforts to identify new markers. Given the heterogeneity of human glioblastomas further investigations are necessary to identify both cancer stem cell-specific markers and the molecular mechanisms sustaining the tumorigenic potential of these cells to develop tailored treatments. Markers for glioblastoma stem cells such as CD133, CD15, integrin-α6, L1CAM might be informative to identify these cells but cannot be conclusively linked to a stem cell phenotype. Overlap of expression, functional state and morphology of different subpopulations lead to carefully consider the techniques employed so far to isolate these cells. Due to a dearth of methods and markers reliably identifying the candidate cancer stem cells, the isolation/enrichment of cancer stem cells to be therapeutically targeted remains a major challenge.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi23-vi24
Author(s):  
Kelly Mitchell ◽  
Joseph Alvarado ◽  
Christopher Goins ◽  
Steven Martinez ◽  
Jonathan Macdonald ◽  
...  

Abstract Glioblastoma (GBM) progression and resistance to conventional therapies is driven in part by cells within the tumor with stem cell properties including quiescence, self-renewal and drug efflux potential. It is thought that eliminating these cancer stem cells (CSCs) is a key component to successful clinical management of GBM. However, currently, few known molecular mechanisms driving CSCs can be exploited for therapeutic development. Core transcription factors such as SOX2, OLIG2, OCT4 and NANOG maintain the CSC state in GBM. Our laboratory recently uncovered a self-renewal signaling axis involving RBBP5 that is necessary and sufficient for CSC maintenance through driving expression of these core stem cell maintenance transcription factors. RBBP5 is a component of the WRAD complex, which promotes Lys4 methylation of histone H3 to positively regulate transcription. We hypothesized that targeting RBBP5 could be a means to disrupt epigenetic programs that maintain CSCs in stemness transcriptional states. We found that genetic and pharmacologic inhibition of the WRAD complex reduced CSC growth, self-renewal and tumor initiation potential. WRAD inhibitors partially dissembled the WRAD complex and reduced H3K4 trimethylation both globally and at the promoters of key stem cell maintenance transcription factors. Using a CSC reporter system, we demonstrated that WRAD complex inhibition decreased growth of SOX2/OCT4 expressing CSCs in a concentration-dependent manner as quantified by live imaging. Overall, our studies assess the function of the WRAD complex and the effect of WRAD complex inhibitors in preclinical models and specifically on the stem cell state for the first time in GBM. Studying the functions of the WRAD complex in CSCs may improve understanding of GBM pathogenesis and elucidate how CSCs survive despite aggressive chemotherapy and radiation. Our ongoing studies aim to develop brain penetrant inhibitors targeting the WRAD complex as an anti-CSC strategy that could potentially synergize with standard of care treatments.


2015 ◽  
Vol 112 (45) ◽  
pp. E6215-E6223 ◽  
Author(s):  
Huimin Zhang ◽  
Haiquan Lu ◽  
Lisha Xiang ◽  
John W. Bullen ◽  
Chuanzhao Zhang ◽  
...  

Increased expression of CD47 has been reported to enable cancer cells to evade phagocytosis by macrophages and to promote the cancer stem cell phenotype, but the molecular mechanisms regulating CD47 expression have not been determined. Here we report that hypoxia-inducible factor 1 (HIF-1) directly activates transcription of the CD47 gene in hypoxic breast cancer cells. Knockdown of HIF activity or CD47 expression increased the phagocytosis of breast cancer cells by bone marrow-derived macrophages. CD47 expression was increased in mammosphere cultures, which are enriched for cancer stem cells, and CD47 deficiency led to cancer stem cell depletion. Analysis of datasets derived from thousands of patients with breast cancer revealed that CD47 expression was correlated with HIF target gene expression and with patient mortality. Thus, CD47 expression contributes to the lethal breast cancer phenotype that is mediated by HIF-1.


Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 100 ◽  
Author(s):  
Masahiro Hata ◽  
Yoku Hayakawa ◽  
Kazuhiko Koike

Several stem cell markers within the gastrointestinal epithelium have been identified in mice. One of the best characterized is Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) and evidence suggests that Lgr5+ cells in the gut are the origin of gastrointestinal cancers. Reserve or facultative stem or progenitor cells with the ability to convert to Lgr5+ cells following injury have also been identified. Unlike the intestine, where Lgr5+ cells at the crypt base act as active stem cells, the stomach may contain unique stem cell populations, since gastric Lgr5+ cells seem to behave as a reserve rather than active stem cells, both in the corpus and in the antral glands. Gastrointestinal stem cells are supported by a specific microenvironment, the stem cell niche, which also promotes tumorigenesis. This review focuses on stem cell markers in the gut and their supporting niche factors. It also discusses the molecular mechanisms that regulate stem cell function and tumorigenesis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Emma Laporte ◽  
Annelies Vennekens ◽  
Hugo Vankelecom

The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary’s endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.


Neurosurgery ◽  
2009 ◽  
Vol 65 (2) ◽  
pp. 426-426
Author(s):  
Melvin Field ◽  
Sergey Bushnev ◽  
Angel A. Alvarez ◽  
Nicholas Avgeropoulos ◽  
Kimi Sugaya

2020 ◽  
Author(s):  
Sajina Shakya ◽  
Anthony D. Gromovsky ◽  
James S. Hale ◽  
Arnon M. Knudsen ◽  
Briana Prager ◽  
...  

AbstractBackgroundGlioblastoma (GBM) is marked by cellular heterogeneity, including metabolic heterogeneity, that varies among cellular microenvironments in the same tumor. Altered cellular metabolism in cancer is well-established, but how lipid metabolism is altered to suit different microenvironmental conditions and cellular states within a tumor remains unexplored.MethodsWe assessed GBM organoid models that mimic the transition zone between nutrient-rich and nutrient-poor pseudopalisading/perinecrotic tumor zones and performed spatial RNA-sequencing of cells to interrogate lipid metabolism. Using targeted lipidomic analysis, we assessed differences in acutely enriched cancer stem cells (CSCs) and non-CSCs from multiple patient-derived models to explore the link between the stem cell state and lipid metabolism.ResultsSpatial analysis revealed a striking difference in lipid content between microenvironments, with lipid enrichment in the hypoxic organoid cores and the perinecrotic and pseudopalisading regions of primary patient tumors. This was accompanied by regionally restricted upregulation of hypoxia-inducible lipid droplet-associated (HILPDA) gene expression in organoid cores and in clinical GBM specimens, but not lower-grade brain tumors, that was specifically localized to pseudopalisading regions of patient tumors. CSCs have low lipid droplet accumulation compared to non-CSCs in organoid models and xenograft tumors, and prospectively sorted lipid-low GBM cells are functionally enriched for stem cell activity. Targeted lipidomic analysis revealed that CSCs had decreased levels of major classes of neutral lipids compared to non-CSCs but had significantly increased polyunsaturated fatty acid production due to high fatty acid desaturase (FADS1/2) expression.ConclusionsOur data demonstrate that lipid metabolism is differentially altered across GBM microenvironments and cellular hierarchies, providing guidance for targeting of these altered lipid metabolic pathways.Key pointsGBM cells in nutrient-poor tumor regions have increased accumulation of lipid droplets.CSCs have reduced lipid content compared to non-CSCs.GBM CSCs and non-CSCs have disparate lipid metabolisms that may be uniquely targetable.Importance of the StudyMetabolic targeting has long been advocated as a therapy against many tumors including GBM, and it remains an outstanding question whether cancer stem cells (CSCs) have altered lipid metabolism. We demonstrated striking differences in lipid metabolism between diverse cell populations from the same patient. These spatially and phenotypically distinct lipid phenotypes occur clinically in the majority of patients and can be recapitulated in laboratory models. Lipidomic analysis of multiple patient-derived models shows a significant shift in lipid metabolism between GBM CSCs and non-CSCs, suggesting that lipid levels may not be simply a product of the microenvironment but also may be a reflection of cellular state. Our results suggest that therapeutic targeting of GBM lipid metabolism must consider multiple separate tumor cell populations to be effective, and we provide a methodologic framework for studying these metabolically diverse cellular populations.


Sarcoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Matteo Trucco ◽  
David Loeb

Sarcomas represent a heterogeneous group of cancers thought to originate from malignant transformation of mesenchymal cells. There is increasing evidence that many, if not all, sarcomas contain within them tumor-initiating, or “cancer stem,” cells responsible for the initiation, maintenance, and potentially relapse and metastasis of the tumor. Various techniques have been adopted in recent years to identify putative sarcoma stem cell populations. The goal of this paper is to summarize the criteria used to identify a stem cell population, describe the more prominent markers and techniques used to isolate cancer stem cells in sarcomas, and review the evidence for the existence of cancer stem cells in sarcomas.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Darius Widera ◽  
Stefan Hauser ◽  
Christian Kaltschmidt ◽  
Barbara Kaltschmidt

Meissner corpuscles and Merkel cell neurite complexes are highly specialized mechanoreceptors present in the hairy and glabrous skin, as well as in different types of mucosa. Several reports suggest that after injury, such as after nerve crush, freeze injury, or dissection of the nerve, they are able to regenerate, particularly including reinnervation and repopulation of the mechanoreceptors by Schwann cells. However, little is known about mammalian cells responsible for these regenerative processes. Here we review cellular origin of this plasticity in the light of newly described adult neural crest-derived stem cell populations. We also discuss further potential multipotent stem cell populations with the ability to regenerate disrupted innervation and to functionally recover the mechanoreceptors. These capabilities are discussed as in context to cellularly reprogrammed Schwann cells and tissue resident adult mesenchymal stem cells.


Sign in / Sign up

Export Citation Format

Share Document