scholarly journals Climatic variations of the Arctic front and the Barents sea ice cover in winter time

2015 ◽  
Vol 125 (1) ◽  
pp. 85 ◽  
Author(s):  
A. N. Zolotokrylin ◽  
T. B. Titkova ◽  
A. Yu. Mikhailov
2020 ◽  
pp. 1-65
Author(s):  
Pawel Schlichtholz

AbstractInvestigation of the predictability of sea ice cover in the Barents Sea is of paramount importance since sea ice changes in this part of the Arctic not only affect local marine ecosystems and human activities but may also influence weather and climate in northern mid-latitudes. Here, observational data from the period 1981-2018 are used to identify statistical linkages of wintertime sea ice cover in the Barents Sea region to preceding sea surface temperature (SST) and Atlantic water temperature anomalies in that region. We find that the ocean temperature anomalies formed by local air-sea interactions during the winter-to-spring season are a significant source of predictability for sea ice area (SIA) in the Barents Sea region the following winter. Optimal areas for constructing SST predictors of Barents Sea SIA and skill scores from retrospective statistical forecasts are shown to differ between the periods to and since the onset of rapid sea ice decline in the region. In the EARLY period (1982-2003), springtime SSTs in the western Barents Sea predicted 44% of the variance of the following winter Barents Sea SIA. In the LATE period (2003-2017), springtime SSTs in the southern Barents Sea predicted 70% of the variance of the following winter Barents Sea SIA. Regression analysis suggests that feedbacks from anomalous winds may be important for the predictability of wintertime sea ice cover in the Barents Sea region.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pawel Schlichtholz

Abstract Accelerated shrinkage of the Arctic sea ice cover is the main reason for the recent Arctic amplification of global warming. There is growing evidence that the ocean is involved in this phenomenon, but to what extent remains unknown. Here, a unique dataset of hydrographic profiles is used to infer the regional pattern of recent subsurface ocean warming and construct a skillful predictor for surface climate variability in the Barents Sea region - a hotspot of the recent climate change. It is shown that, in the era of satellite observations (1981–2018), summertime temperature anomalies of Atlantic water heading for the Arctic Ocean explain more than 80% of the variance of the leading mode of variability in the following winter sea ice concentration over the entire Northern Hemisphere, with main centers of action just in the Barents Sea region. Results from empirical forecast experiments demonstrate that predictability of the wintertime sea ice cover in the Barents Sea from subsurface ocean heat anomalies might have increased since the Arctic climate shift of the mid-2000s. In contrast, the corresponding predictability of the sea ice cover in the nearby Greenland Sea has been lost.


2019 ◽  
Vol 92 (2) ◽  
pp. 430-449 ◽  
Author(s):  
Elena Ivanova ◽  
Ivar Murdmaa ◽  
Anne de Vernal ◽  
Bjørg Risebrobakken ◽  
Alexander Peyve ◽  
...  

AbstractThe Barents Sea offers a suitable location for documenting advection of warm and saline Atlantic Water (AW) into the Arctic and its impact on deglaciation and postglacial conditions. We investigate the timing, succession, and mechanisms of the transition from proximal glaciomarine to marine environment in the northwestern Barents Sea. Two studied sediment cores demonstrate diachronous retreat of the grounded ice sheet from the Kvitøya Trough (core S2528) to Erik Eriksen Trough (core S2519). Oxygen isotope records from core S2528 depict a two-step pattern, with lower δ18O values prior to the Younger Dryas (YD), and higher values afterward because of advection of the more saline, 18O-enriched AW. At this location, subsurface AW penetration increased during the Allerød and YD/Preboreal transition. In the study area, foraminiferal and dinocyst data from the YD interval suggest cold conditions, extensive sea-ice cover, and brine formation, along with the flow of chilled AW at subsurface and the development of a high-productivity polynya in the Erik Eriksen Trough. Dense winter sea-ice cover with seasonal productivity persisted in the Kvitøya Trough area during the early Holocene, whereas surface warming seems to have occurred during the middle Holocene interval.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Mats Brockstedt Olsen Huserbråten ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Frode Vikebø

Abstract The Arctic amplification of global warming is causing the Arctic-Atlantic ice edge to retreat at unprecedented rates. Here we show how variability and change in sea ice cover in the Barents Sea, the largest shelf sea of the Arctic, affect the population dynamics of a keystone species of the ice-associated food web, the polar cod (Boreogadus saida). The data-driven biophysical model of polar cod early life stages assembled here predicts a strong mechanistic link between survival and variation in ice cover and temperature, suggesting imminent recruitment collapse should the observed ice-reduction and heating continue. Backtracking of drifting eggs and larvae from observations also demonstrates a northward retreat of one of two clearly defined spawning assemblages, possibly in response to warming. With annual to decadal ice-predictions under development the mechanistic physical-biological links presented here represent a powerful tool for making long-term predictions for the propagation of polar cod stocks.


2021 ◽  
Author(s):  
Hannah Zanowski ◽  
Alexandra Jahn ◽  
Marika Holland

<p>Recently, the Arctic has undergone substantial changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in 7 climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6) and assess their agreement over the historical period (1980-2000) and in two future emissions scenarios, SSP1-2.6 and SSP5-8.5. In the historical simulation, few models agree closely with observations over 1980-2000. In both future scenarios the models show an increase in liquid (ocean) freshwater storage in conjunction with a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5-8.5 than SSP1-2.6. The liquid fluxes through the gateways exhibit a more complex pattern, with models exhibiting a change in sign of the freshwater flux through the Barents Sea Opening and little change in the flux through the Bering Strait in addition to increased export from the remaining straits by the end of the 21st century. A decomposition of the liquid fluxes into their salinity and volume contributions shows that the Barents Sea flux changes are driven by salinity changes, while the Bering Strait flux changes are driven by compensating salinity and volume changes. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on whether there will be a decrease, increase, or steady liquid freshwater export in the early to mid 21st century, although they mostly show increased liquid freshwater export in the late 21st century. The underlying cause of this is a difference in the magnitude and timing of a simulated decrease in the volume flux through these straits. Although the models broadly agree on the sign of late 21st century storage and flux changes, substantial differences exist between the magnitude of these changes and the models’ Arctic mean states, which shows no fundamental improvement in the models compared to CMIP5.</p>


2021 ◽  
pp. 179-194
Author(s):  
I.O. Dumanskaya ◽  

The warming of the Arctic, especially intensified at the beginning of the XXI century, is accompanied by a significant decrease in the area of ice cover in the Arctic seas. The article shows the quantitative changes in the ice parameters of the Barents Sea, as well as factors affecting the formation of ice cover in recent years. In the twenty-first century the frequency of occurrence of mild winters has increased by 17%, the frequency of severe winters has decreased by 19%. Significantly increased the temperature at the meteorological station Malye Karmakuly, water temperature at transect "Kola Meridian", atmospheric and oceanic heat fluxes, and speed of sea currents on the Western border of the Barents sea. The duration of the ice period decreased by an average of 2–3 weeks, and the rate of reduction of ice cover was 7.2% for 10 years. This is the highest speed compared to other Arctic seas. The article shows that the variability of the ice cover of the Barents Sea and other parameters of the natural environment in the region has the cyclic character. Presumably, the cycle period is close to 84 years, which corresponds to the orbital period of Uranium. The minimum sea ice extent after 1935–1945 is expected in the period 2019–2029.


2020 ◽  
pp. 1-15
Author(s):  
Camille Brice ◽  
Anne de Vernal ◽  
Elena Ivanova ◽  
Simon van Bellen ◽  
Nicolas Van Nieuwenhove

Abstract Postglacial changes in sea-surface conditions, including sea-ice cover, summer temperature, salinity, and productivity were reconstructed from the analyses of dinocyst assemblages in core S2528 collected in the northwestern Barents Sea. The results show glaciomarine-type conditions until about 11,300 ± 300 cal yr BP and limited influence of Atlantic water at the surface into the Barents Sea possibly due to the proximity of the Svalbard-Barents Sea ice sheet. This was followed by a transitional period generally characterized by cold conditions with dense sea-ice cover and low-salinity pulses likely related to episodic freshwater or meltwater discharge, which lasted until 8700 ± 700 cal yr BP. The onset of “interglacial” conditions in surface waters was marked by a major change in dinocyst assemblages, from dominant heterotrophic to dominant phototrophic taxa. Until 4100 ± 150 cal yr BP, however, sea-surface conditions remained cold, while sea-surface salinity and sea-ice cover recorded large amplitude variations. By ~4000 cal yr BP optimum sea-surface temperature of up to 4°C in summer and maximum salinity of ~34 psu suggest enhanced influence of Atlantic water, and productivity reached up to 150 gC/m2/yr. After 2200 ± 1300 cal yr BP, a distinct cooling trend accompanied by sea-ice spreading characterized surface waters. Hence, during the Holocene, with exception of an interval spanning about 4000 to 2000 cal yr BP, the northern Barents Sea experienced harsh environments, relatively low productivity, and unstable conditions probably unsuitable for human settlements.


Author(s):  
Laura Hume-Wright ◽  
Emma Fiedler ◽  
Nicolas Fournier ◽  
Joana Mendes ◽  
Ed Blockley ◽  
...  

Abstract The presence of sea ice has a major impact on the safety, operability and efficiency of Arctic operations and navigation. While satellite-based sea ice charting is routinely used for tactical ice management, the marine sector does not yet make use of existing operational sea ice thickness forecasting. However, data products are now freely available from the Copernicus Marine Environment Monitoring Service (CMEMS). Arctic asset managers and vessels’ crews are generally not aware of such products, or these have so far suffered from insufficient accuracy, verification, resolution and adequate format, in order to be well integrated within their existing decision-making processes and systems. The objective of the EU H2020 project “Safe maritime operations under extreme conditions: The Arctic case” (SEDNA) is to improve the safety and efficiency of Arctic navigation. This paper presents a component focusing on the validation of an adaption of the 7-day sea ice thickness forecast from the UK Met Office Forecast Ocean Assimilation Model (FOAM). The experimental forecast model assimilates the CryoSat-2 satellite’s ice freeboard daily data. Forecast skill is evaluated against unique in-situ data from five moorings deployed between 2015 and 2018 by the Barents Sea Metocean and Ice Network (BASMIN) Joint Industry Project. The study shows that the existing FOAM forecasts produce adequate results in the Barents Sea. However, while studies have shown the assimilation of CryoSat-2 data is effective for thick sea ice conditions, this did not improve forecasts for the thinner sea ice conditions of the Barents Sea.


Author(s):  
Rasmus Benestad

The Barents Sea is a region of the Arctic Ocean named after one of its first known explorers (1594–1597), Willem Barentsz from the Netherlands, although there are accounts of earlier explorations: the Norwegian seafarer Ottar rounded the northern tip of Europe and explored the Barents and White Seas between 870 and 890 ce, a journey followed by a number of Norsemen; Pomors hunted seals and walruses in the region; and Novgorodian merchants engaged in the fur trade. These seafarers were probably the first to accumulate knowledge about the nature of sea ice in the Barents region; however, scientific expeditions and the exploration of the climate of the region had to wait until the invention and employment of scientific instruments such as the thermometer and barometer. Most of the early exploration involved mapping the land and the sea ice and making geographical observations. There were also many unsuccessful attempts to use the Northeast Passage to reach the Bering Strait. The first scientific expeditions involved F. P. Litke (1821±1824), P. K. Pakhtusov (1834±1835), A. K. Tsivol’ka (1837±1839), and Henrik Mohn (1876–1878), who recorded oceanographic, ice, and meteorological conditions.The scientific study of the Barents region and its climate has been spearheaded by a number of campaigns. There were four generations of the International Polar Year (IPY): 1882–1883, 1932–1933, 1957–1958, and 2007–2008. A British polar campaign was launched in July 1945 with Antarctic operations administered by the Colonial Office, renamed as the Falkland Islands Dependencies Survey (FIDS); it included a scientific bureau by 1950. It was rebranded as the British Antarctic Survey (BAS) in 1962 (British Antarctic Survey History leaflet). While BAS had its initial emphasis on the Antarctic, it has also been involved in science projects in the Barents region. The most dedicated mission to the Arctic and the Barents region has been the Arctic Monitoring and Assessment Programme (AMAP), which has commissioned a series of reports on the Arctic climate: the Arctic Climate Impact Assessment (ACIA) report, the Snow Water Ice and Permafrost in the Arctic (SWIPA) report, and the Adaptive Actions in a Changing Arctic (AACA) report.The climate of the Barents Sea is strongly influenced by the warm waters from the Norwegian current bringing heat from the subtropical North Atlantic. The region is 10°C–15°C warmer than the average temperature on the same latitude, and a large part of the Barents Sea is open water even in winter. It is roughly bounded by the Svalbard archipelago, northern Fennoscandia, the Kanin Peninsula, Kolguyev Island, Novaya Zemlya, and Franz Josef Land, and is a shallow ocean basin which constrains physical processes such as currents and convection. To the west, the Greenland Sea forms a buffer region with some of the strongest temperature gradients on earth between Iceland and Greenland. The combination of a strong temperature gradient and westerlies influences air pressure, wind patterns, and storm tracks. The strong temperature contrast between sea ice and open water in the northern part sets the stage for polar lows, as well as heat and moisture exchange between ocean and atmosphere. Glaciers on the Arctic islands generate icebergs, which may drift in the Barents Sea subject to wind and ocean currents.The land encircling the Barents Sea includes regions with permafrost and tundra. Precipitation comes mainly from synoptic storms and weather fronts; it falls as snow in the winter and rain in the summer. The land area is snow-covered in winter, and rivers in the region drain the rainwater and meltwater into the Barents Sea. Pronounced natural variations in the seasonal weather statistics can be linked to variations in the polar jet stream and Rossby waves, which result in a clustering of storm activity, blocking high-pressure systems. The Barents region is subject to rapid climate change due to a “polar amplification,” and observations from Svalbard suggest that the past warming trend ranks among the strongest recorded on earth. The regional change is reinforced by a number of feedback effects, such as receding sea-ice cover and influx of mild moist air from the south.


Author(s):  
Martin Solan ◽  
Ellie R. Ward ◽  
Christina L. Wood ◽  
Adam J. Reed ◽  
Laura J. Grange ◽  
...  

Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate change, but the consequences of altered biodiversity for the sequestration, transformation and storage of nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect intersecting the polar front. We find a clear separation in community composition at the polar front that marks a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient to distinguish a southern high from a northern low. While patterns in community structure reflect proximity to arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and emphasize the rapidity with which an entire region could experience a functional transformation. As strong benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to a changing climate will have important ramifications for ecosystem functioning and the trophic structure of the entire food web. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Sign in / Sign up

Export Citation Format

Share Document