scholarly journals On the possibility to restore the climatic signal in the disturbed record of stable water isotope content in the old (0.4–1.2 Ma) Vostok ice (Central Antarctica)

2019 ◽  
Vol 59 (4) ◽  
pp. 437-451
Author(s):  
A. A. Ekaykin ◽  
V. Ya. Lipenkov ◽  
A. N. Veres ◽  
A. V. Kozachek ◽  
A. A. Skakun
2021 ◽  
Author(s):  
Abigail G. Hughes ◽  
Sonja Wahl ◽  
Tyler R. Jones ◽  
Alexandra Zuhr ◽  
Maria Hörhold ◽  
...  

Abstract. Ice core water isotope records from Greenland and Antarctica are a valuable proxy for paleoclimate reconstruction, yet the processes influencing the climate signal stored in the isotopic composition of the snow are being revisited. Apart from precipitation input, post-depositional processes such as wind-driven redistribution and vapor-snow exchange processes at and below the surface are hypothesized to contribute to the isotope climate signal. Recent field studies have shown that surface snow isotopes vary between precipitation events and co-vary with vapor isotopes, which demonstrates that vapor- snow exchange is an important driving mechanism. Here we investigate how vapor-snow exchange and sublimation processes influence the isotopic composition of the snowpack. Controlled laboratory experiments under dry air flow show an increase of snow isotopic composition of up to 8 ‰ δ18O in the uppermost layer, with an attenuated signal down to 3 cm snow depth over the course of 4–6 days. This enrichment is accompanied by a decrease in the second-order parameter d-excess, indicating kinetic fractionation processes. Using a simple mass-balance and diffusion box model in conjunction with our observed laboratory vapor isotope signals, we are able to reproduce the observed changes in the snow. This confirms that sublimation alone can lead to a strong enrichment of stable water isotopes in surface snow and subsequent enrichment in the layers below. To compare laboratory experiments with realistic polar conditions, we completed four 2–3 day field experiments at the East Greenland Ice Core Project site (Northeast Greenland) in summer 2019. High-resolution temporal sampling of both natural and isolated snow was conducted under clear-sky conditions, and demonstrated that the snow isotopic composition changes on hourly timescales. A change of snow isotope content associated with sublimation is currently not implemented in isotope-enabled climate models and is not taken into account when interpreting ice core isotopic records. However, our results demonstrate that post-depositional processes such as sublimation play a role in creating the climate signal recorded in the water isotopes in surface snow. This suggests that the ice core water isotope signal may effectively integrate across multiple parameters, and the ice core climate record should be interpreted as such.


2021 ◽  
pp. 1-10
Author(s):  
Alexey A. Ekaykin ◽  
Alexey V. Bolshunov ◽  
Vladimir Ya. Lipenkov ◽  
Mirko Scheinert ◽  
Lutz Eberlein ◽  
...  

Abstract The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.


Nature ◽  
1981 ◽  
Vol 293 (5831) ◽  
pp. 389-391 ◽  
Author(s):  
Michael M. Herron ◽  
Susan L. Herron ◽  
Chester C. Langway
Keyword(s):  
Ice Melt ◽  

2021 ◽  
Vol 118 (38) ◽  
pp. e2104105118
Author(s):  
Matthew B. Osman ◽  
Sloan Coats ◽  
Sarah B. Das ◽  
Joseph R. McConnell ◽  
Nathan Chellman

Reconstruction of the North Atlantic jet stream (NAJ) presents a critical, albeit largely unconstrained, paleoclimatic target. Models suggest northward migration and changing variance of the NAJ under 21st-century warming scenarios, but assessing the significance of such projections is hindered by a lack of long-term observations. Here, we incorporate insights from an ensemble of last-millennium water isotope–enabled climate model simulations and a wide array of mean annual water isotope (δ18O) and annually accumulated snowfall records from Greenland ice cores to reconstruct North Atlantic zonal-mean zonal winds back to the 8th century CE. Using this reconstruction we provide preobservational constraints on both annual mean NAJ position and intensity to show that late 20th- and early 21st-century NAJ variations were likely not unique relative to natural variability. Rather, insights from our 1,250 year reconstruction highlight the overwhelming role of natural variability in thus far masking the response of midlatitude atmospheric dynamics to anthropogenic forcing, consistent with recent large-ensemble transient modeling experiments. This masking is not projected to persist under high greenhouse gas emissions scenarios, however, with model projected annual mean NAJ position emerging as distinct from the range of reconstructed natural variability by as early as 2060 CE.


2006 ◽  
Vol 75 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Sibylle Steinbeiss ◽  
Christian M. Schmidt ◽  
Klaus Heide ◽  
Gerd Gleixner

2018 ◽  
Vol 11 (8) ◽  
pp. 4725-4736 ◽  
Author(s):  
Elizabeth D. Keller ◽  
W. Troy Baisden ◽  
Nancy A. N. Bertler ◽  
B. Daniel Emanuelsson ◽  
Silvia Canessa ◽  
...  

Abstract. We describe a systematic approach to the calibration and uncertainty estimation of a high-resolution continuous flow analysis (CFA) water isotope (δ2H, δ18O) record from the Roosevelt Island Climate Evolution (RICE) Antarctic ice core. Our method establishes robust uncertainty estimates for CFA δ2H and δ18O measurements, comparable to those reported for discrete sample δ2H and δ18O analysis. Data were calibrated using a time-weighted two-point linear calibration with two standards measured both before and after continuously melting 3 or 4 m of ice core. The error at each data point was calculated as the quadrature sum of three factors: Allan variance error, scatter over our averaging interval (error of the variance) and calibration error (error of the mean). Final mean total uncertainty for the entire record is δ2H=0.74 ‰ and δ18O=0.21 ‰. Uncertainties vary through the data set and were exacerbated by a range of factors, which typically could not be isolated due to the requirements of the multi-instrument CFA campaign. These factors likely occurred in combination and included ice quality, ice breaks, upstream equipment failure, contamination with drill fluid and leaks or valve degradation. We demonstrate that our methodology for documenting uncertainty was effective across periods of uneven system performance and delivered a significant achievement in the precision of high-resolution CFA water isotope measurements.


Trees ◽  
2018 ◽  
Vol 33 (1) ◽  
pp. 227-242 ◽  
Author(s):  
Liliana V. Belokopytova ◽  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Irina P. Panyushkina ◽  
Eugene A. Vaganov

2015 ◽  
Vol 19 (6) ◽  
pp. 2617-2635 ◽  
Author(s):  
M. Sprenger ◽  
T. H. M. Volkmann ◽  
T. Blume ◽  
M. Weiler

Abstract. Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last 2 decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by solving the Richards equation numerically with the finite-element code of HYDRUS-1D. The transport of deuterium was simulated with the advection-dispersion equation, and a modified version of HYDRUS was used, allowing deuterium loss during evaporation. The Mualem–van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a), using only the pore water isotope content, cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c), using both the isotope profiles and the soil moisture time series, resulted in good simulation results with regard to the Kling–Gupta efficiency and good parameter identifiability. However, approach (b) has the advantage that it considers the isotope data not only for the solute transport parameters but also for water flow and root water uptake, and thus increases parameter realism. Approaches (b) and (c) both outcompeted simulations run with parameters derived from pedotransfer functions, which did not result in an acceptable representation of the soil moisture dynamics and pore water stable isotope composition. Overall, parameters based on this new approach that includes isotope data lead to similar model performances regarding the water balance and soil moisture dynamics and better parameter identifiability than the conventional inverse model approaches limited to hydrometric fitting targets. If only data from isotope profiles in combination with textural information is available, the results are still satisfactory. This method has the additional advantage that it will not only allow us to estimate water balance and response times but also site-specific time variant transit times or solute breakthrough within the soil profile.


Sign in / Sign up

Export Citation Format

Share Document