PROBABILISTIC-BASED STOPE DESIGN METHODOLOGY FOR COMPLEX ORE BODY WITH ROCK MASS PROPERTY VARIABILITY

2020 ◽  
Vol 12 (3) ◽  
pp. 444-453
Author(s):  
Igor SOKOLOV ◽  
◽  
Yury ANTIPIN ◽  
Artem ROZHKOV ◽  
◽  
...  

The purpose work. Substantiation and selection of a safe and effective option of mining technology of the experimental block in the pilot industrial mining of the Skalistoe deposit. Method of research. Analysis and synthesis of project solutions, experience in mining inclined low-thickness ore bodies, economic and mathematical modeling and optimization of the parameters of options mining systems in the conditions of the experimental block. Results of research. As a result of research it was established: - the sublevel caving mining system with the parameters adopted in the project does not guarantee the completeness of the extraction of reserves and the effectiveness of mining operations. Project indicators of extraction by sublevel caving technology with frontal ore drawing are overestimated and difficult to achieve in these geological and technical conditions (combination of low thickness and angle of ore body); project scheme for the delivery and transportation of rock mass seems impractical due to the significant volume of heading workings and increased transportation costs; - eight technically rational options of various mining systems were constructed, most relevant to the geological and technical conditions of the deposit. Five variants of the sublevel chamber system and pillar caving, a project variant of sublevel caving technology with frontal ore drawing and two options flat-back cut-and-fill system were considered; - for mining the Skalistoe deposit, according to the results of economic and mathematical modeling, optimal by the criterion of profit per 1 ton of balance reserves of ore is a option of the technology of chamber extraction with dual chambers, frontal drawing of ore by remote-controlled load-haul-dump machine and subsequent pillars caving, as having the greatest profit; - the calculations justified stable spans of dual chambers (25.3 m) and the width of panel pillars (3 m). With an allowable span of 25.3 m, the roof of the dual chambers will be stable with a safety factor of 1.41, and a panel pillar with a width of 3 m has a sufficient margin of safety (more than 1.6) in the whole range of ore body thickness variation; - the proposed scheme of delivery and transportation of rock mass, which allows to reduce the volume of tunnel works by 26% and the average length of transportation by 10-15% compared with the project. Findings. Developed in the process of modernization the technology sublevel chamber system with double-chamber, compared with the project technology, it is possible to significantly increase the efficiency of mining of the low thickness deposit of rich ores Skalistoe by reducing the specific volume of preparatory-rifled work by 34%, the cost of mined ore by 12%, losses and ore dilution – by 2 and 2.9 times, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Haiping Yuan ◽  
Chenghao Chen ◽  
Zhongming He ◽  
Yixian Wang

Mining disturbance will induce further weakening of faults and rock bridges, improve rock mass permeability and, in serious cases, conduct surface rivers to cause disasters. A numerical calculation model of river-fault in the mining area is established. Based on the fluid-solid coupling theory of rock mass, the influence of mining disturbance on the development and evolution process of rock bridge rupture and river-fault-stope potential seepage channel is simulated and calculated. Research studies show that under the disturbance of ore body mining, it is possible to form a channel from the river to fault to seepage and drainage in the stope. The disturbance of ore body mining has no great adverse effect on the stability of the rock mass at the top of F2 fault. The rock mass damage caused by mining is only distributed in local areas, and the rock bridge between the river, fault, and stope is not completely connected. The fracture of mining rock mass leads to the increase in permeability of rock mass, and seepage tends to spread in the direction of the fault, but there is no obvious through drainage channel from surface water to the stope. The results of research provide technical guidance for the mine to use the filling mining method after the river does not change the road safety and reliability certification and can also provide reference for similar mines.


2014 ◽  
Vol 670-671 ◽  
pp. 668-673
Author(s):  
Jiang Feng Ma ◽  
Xiu Li Zhang ◽  
Yu Yong Jiao ◽  
Hu Nan Tian

A three-dimensional numerical model of the rock mass including ore body is established by FLAC3D software, and then the surface subsidence caused by backfilling under different roof thicknesses of mining stope (the vertical distance between upper mining limit and surface) are calculated and analyzed. By comparing the surface displacement, the stress distribution, and the damage zone under different conditions, the minimum roof thickness is determined.


2015 ◽  
pp. 29-52
Author(s):  
Dragan Zlatanovic ◽  
Vladimir Milisavljevic ◽  
Milenko Ljubojev ◽  
Dragan Ignjatovic
Keyword(s):  

Author(s):  
Yu. G. Antipin ◽  
K. V. Baranovskiy ◽  
Yu. M. Solomein ◽  
A. A. Rozhkov

The purpose of this work is to justify and selection of a safe and effective option of the technology for experimental block during the pilot development of the «Skalistoe» deposit. Based on the researches determined that the projected system for the development of sub-floor caving with the accepted parameters does not guarantee the completeness of the extraction of reserves and the efficiency of mining. Project indicators for ore extraction using the technology of sub-floor caving with face ore output are overstated and difficult to achieve in these mining and geological conditions (a combination of low width and insufficiently steep angle of incidence of the ore body); The projected scheme for the delivery and transportation of rock mass is characterized by a significant amount of excavation, increased costs for the transportation of ore and is impractical in conditions of low productivity of the mine. For low power and not enough steep angle of incidence of the field with a high content of useful component, the most suitable options are the chamber development system, the system of sub-floor caving and horizontal layers. Based on this, seven technically rational variants of development systems were constructed: five variants of a sub-floor-chamber development system with the subsequent collapse of the pillars and two variants of a horizontal layer system with a dry (rock) backfill. For the conditions of mining the «Skalistoe» deposit according to the results of economic and mathematical modeling, the optimal technology for profit attributed to 1 ton of redeemable balance of ore reserves is a variant of the technology of sub-floor-chamber excavation with dual chambers, mechanical production of ore with remote control load-andhaul machines and subsequent the collapse of pillars, as having the highest profit by decreasing volume of preparating works on the block by 34%, the cost of ore mining by 12%, losses and dilution of ore by 2 and 2,9 times, accordingly. In particular, the proposed scheme for the delivery and transportation of rock mass can reduce the volume of tunneling by 25% and the average transportation length by 10-15% compared with the projected scheme.


Author(s):  
Suihan Zhang ◽  
Fredrik Johansson ◽  
Håkan Stille

AbstractGrout curtains are commonly constructed under dams to reduce the seepage through the rock foundation. In the design of grout curtains, empirical methods have mainly been used since the introduction of dam foundation grouting. Although empirical methods have been used with success in several projects, they have their limitations, such as poor control of the grout spread, only an indirect consideration of the threat of internal erosion of fracture infillings in the grouted zones, and the risk of hydraulic jacking. This paper presents a theory-based design methodology for grout curtains under dams founded on rock. In the design methodology, the grout curtain is designed as a structural component of the dam. The risk of erosion of fracture infilling material is explicitly accounted for along with the reduction of the hydraulic conductivity of the rock mass, and an optimization of the total uplift force. By applying the proposed design methodology, engineers can create a design better adapted to the prevailing geological and hydrogeological conditions in the rock mass, resulting in more durable grout curtains. The proposed methodology also enables cost and time estimates to be calculated for the grout curtain’s construction. Applying the principles of the observational method during the grouting execution also allows the design to be modified via predefined measures if the initial design is found to be unsuitable.


2021 ◽  
pp. 53-57
Author(s):  
V. A. Zaprudin ◽  
A. V. Kotenkov ◽  
I. V. Zyryanov ◽  
A. S. Kulminskiy

The article presents the chronology and stages of mining resumption at Mir pipe. The initiatory steps of the conceptual approach to underground mining of ore reserves at the depth greater than 1500 m are described. The primary measures on catchment of highly mineralized water from Metegero-Ichersky aquifer are identified. The exploratory study results on deeper level mining safety in the future underground mine in terms of the strata pressure reduction are given. The authors in detail discuss two methods of rock mass destressing: destressing drilling and formation of protection layers with different parameters at the depths of 1000 m and greater. Natural stress state of rock mass is modeled in Rocscience RS3 environment. The analyses of the mathematical models of ore and enclosing rock destressing show that the safest and the most effective methods of dеstressing of deeper level rock mass in Mir Mine is creation of a protective separation layer both in ore body and in enclosing rock mass on the both sides of the ore body at a distance of 15 m. Such destressing measures can allow safe mining of ore reserves using the sublevel stoping method with sublevels to 50 m high. The research findings will be used in the front-end engineering as the basis for the further mine planning and design.


Sign in / Sign up

Export Citation Format

Share Document