scholarly journals Application of histochemical stains for rapid qualitative analysis of the lignin content in multiple wood species

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3524-3533
Author(s):  
Yan Yang ◽  
Yiming He ◽  
Li Han ◽  
Aifeng Wang ◽  
Wei Wang ◽  
...  

Rapid qualitative analysis was used to determine the influence of the lignin content of wood cell walls on the compression and bending properties of multiple wood species. The lignin type and cell wall content of Cunninghamia lanceolate, Fagus longipetiolata, Betula alnoides, Fraxinus mandshurica, and Tectona grandis was analyzed via histochemical staining, which included: the Mäule staining reaction, the Weisner staining reaction, and a fluorescence reaction. The results showed that the more red the Mäule staining reaction was, the greater the Syringyl lignin (S-type lignin) content was, and the more yellowish-brown the Mäule staining reaction was, the greater the Guaiacyl lignin (G-type lignin) content was. In addition, the more reddish-purple the Wiesner staining reaction was, the greater the lignin content was. The greater the brightness value of the fluorescence reaction was, the greater the lignin content was. Due to the negative correlation between the lignin content of the wood cell wall and the bending and compression properties of the wood, the application of histochemical stains for the analysis of wood lignin content could provide a reference and experimental basis for bending and compression treatments of various woods.

Holzforschung ◽  
2017 ◽  
Vol 72 (1) ◽  
pp. 31-36
Author(s):  
Daichi Yamashita ◽  
Satoshi Kimura ◽  
Masahisa Wada ◽  
Masahiro Samejima ◽  
Keiji Takabe

AbstractTransverse sections of white birch (Betula platyphylla) were treated with anhydrous ammonia at 60–140°C (ammonia treatment, AT). As a result, the crystal structure of cellulose in the AT samples changed to cellulose IIII, and acetamide was produced. The surface area of the AT samples, the amount of sugar released upon acid hydrolysis and the lignin content were not changed. However, a small amount of lignin became acid soluble. Mäule color reaction, indicative of the presence of syringyl lignin, showed decreasing color intensities with increasing temperature of AT. The results can be easily interpreted that AT affects ester linkages and side chains of hemicelluloses and syringyl lignin. In addition, AT was carried out on 1-μm thick transverse sections and block specimens. Xylanase treatment and immunolabeling revealed that AT enhances xylan degradation, but ray cells are resistant to xylanase even after AT. On the block sample, a deposited xylan layer appeared on the inner surface of fiber cell walls. Apparently, xylan moved to the surface in contact with the fluid ammonia during AT. The vessel cell wall did not show a similar migration effect, indicating a cell wall-specific interaction with ammonia.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


2020 ◽  
Vol 9 (4) ◽  
pp. e31942727
Author(s):  
João Gabriel Missia da Silva ◽  
Pedro Nicó de Medeiros ◽  
Denise Ransolin Soranso ◽  
Vinicius Peixoto Tinti ◽  
José Tarcísio da Silva Oliveira ◽  
...  

The aim of this study was to evaluate the influence of anatomical characteristics on the adhesion performance of Vatairea sp., Paulownia sp., Aspidosperma populifolium and Tectona grandis wood. Specimens for anatomical, physical and mechanical analyzes were produced from tangentially oriented boards. The treatments were joint glued from pieces of the same anatomical orientation (radial and tangential), evaluated for shear strength and glue line failure. The Vatairea sp wood had the highest specific gravity (0.74 g cm-3) and the Paulownia sp (0.34 g cm-3) wood was smaller. Aspidosperma populifolium species showed the highest shear strength in the glue line in the tangential and radial faces. The anatomical variables with higher influence on the wood adhesion process were pith ray cells and especially fibers that exhibit the greatest correlation with the shear strength of the glue line.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amandine Leroy ◽  
Xavier Falourd ◽  
Loïc Foucat ◽  
Valérie Méchin ◽  
Fabienne Guillon ◽  
...  

Abstract Background Biomass recalcitrance is governed by various molecular and structural factors but the interplay between these multiscale factors remains unclear. In this study, hot water pretreatment (HWP) was applied to maize stem internodes to highlight the impact of the ultrastructure of the polymers and their interactions on the accessibility and recalcitrance of the lignocellulosic biomass. The impact of HWP was analysed at different scales, from the polymer ultrastructure or water mobility to the cell wall organisation by combining complementary compositional, spectral and NMR analyses. Results HWP increased the kinetics and yield of saccharification. Chemical characterisation showed that HWP altered cell wall composition with a loss of hemicelluloses (up to 45% in the 40-min HWP) and of ferulic acid cross-linking associated with lignin enrichment. The lignin structure was also altered (up to 35% reduction in β–O–4 bonds), associated with slight depolymerisation/repolymerisation depending on the length of treatment. The increase in $${T}_{1\rho }^{H}$$ T 1 ρ H , $${T}_{HH}$$ T HH and specific surface area (SSA) showed that the cellulose environment was looser after pretreatment. These changes were linked to the increased accessibility of more constrained water to the cellulose in the 5–15 nm pore size range. Conclusion The loss of hemicelluloses and changes in polymer structural features caused by HWP led to reorganisation of the lignocellulose matrix. These modifications increased the SSA and redistributed the water thereby increasing the accessibility of cellulases and enhancing hydrolysis. Interestingly, lignin content did not have a negative impact on enzymatic hydrolysis but a higher lignin condensed state appeared to promote saccharification. The environment and organisation of lignin is thus more important than its concentration in explaining cellulose accessibility. Elucidating the interactions between polymers is the key to understanding LB recalcitrance and to identifying the best severity conditions to optimise HWP in sustainable biorefineries.


Author(s):  
S. Pramod ◽  
M. Anju ◽  
H. Rajesh ◽  
A. Thulaseedharan ◽  
Karumanchi S. Rao

AbstractPlant growth regulators play a key role in cell wall structure and chemistry of woody plants. Understanding of these regulatory signals is important in advanced research on wood quality improvement in trees. The present study is aimed to investigate the influence of exogenous application of 24-epibrassinolide (EBR) and brassinosteroid inhibitor, brassinazole (BRZ) on wood formation and spatial distribution of cell wall polymers in the xylem tissue of Leucaena leucocephala using light and immuno electron microscopy methods. Brassinazole caused a decrease in cambial activity, xylem differentiation, length and width of fibres, vessel element width and radial extent of xylem suggesting brassinosteroid inhibition has a concomitant impact on cell elongation, expansion and secondary wall deposition. Histochemical studies of 24-epibrassinolide treated plants showed an increase in syringyl lignin content in the xylem cell walls. Fluorescence microscopy and transmission electron microscopy studies revealed the inhomogenous pattern of lignin distribution in the cell corners and middle lamellae region of BRZ treated plants. Immunolocalization studies using LM10 and LM 11 antibodies have shown a drastic change in the micro-distribution pattern of less substituted and highly substituted xylans in the xylem fibres of plants treated with EBR and BRZ. In conclusion, present study demonstrates an important role of brassinosteroid in plant development through regulating xylogenesis and cell wall chemistry in higher plants.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2625
Author(s):  
Nurashikin Kemat ◽  
Richard G. F. Visser ◽  
Frans A. Krens

One of the characteristics of hyperhydric plants is the reduction of cell wall lignification (hypolignification), but how this is related to the observed abnormalities of hyperhydricity (HH), is still unclear. Lignin is hydrophobic, and we speculate that a reduction in lignin levels leads to more capillary action of the cell wall and consequently to more water in the apoplast. p-coumaric acid is the hydroxyl derivative of cinnamic acid and a precursor for lignin and flavonoids in higher plant. In the present study, we examined the role of lignin in the development of HH in Arabidopsis thaliana by checking the wild-types (Ler and Col-0) and mutants affected in phenylpropanoid biosynthesis, in the gene coding for cinnamate 4-hydroxylase, C4H (ref3-1 and ref3-3). Exogenously applied p-coumaric acid decreased the symptoms of HH in both wild-type and less-lignin mutants. Moreover, the results revealed that exogenously applied p-coumaric acid inhibited root growth and increased the total lignin content in both wild-type and less-lignin mutants. These effects appeared to diminish the symptoms of HH and suggest an important role for lignin in HH.


2019 ◽  
Author(s):  
Philippe Golfier ◽  
Faride Unda ◽  
Emily K. Murphy ◽  
Jianbo Xie ◽  
Feng He ◽  
...  

AbstractCell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. A wealth of research in model organisms has revealed that transcriptional regulation of secondary cell wall formation is orchestrated by a hierarchical transcription factor (TF) network with NAC TFs as master regulators and MYB factors in the lower tier regulators. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. Here, we characterized two Miscanthus MYB TFs, MsSCM1 and MsMYB103, and compared their transcriptional impact with that of the master regulator MsSND1. In Miscanthus leaves MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. Ectopic expression of MsSCM1 and MsMYB103 in tobacco leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin composition. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed extensive overlap with the response to MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards tailored biomass.


2021 ◽  
Author(s):  
Mengdan Cao ◽  
Wenting Ren ◽  
Jiawei Zhu ◽  
Hankun Wang ◽  
Juan Guo ◽  
...  

Abstract Efficient convention of bamboo biomass into biofuel and biomaterials, as well as chemical treatment are both highly related to the porosity of cell wall. The present work characterizes the micropore and mesopore structure in cell walls of six different bamboo species and tissue types using CO2 and N2 adsorption. Two plantation wood species were also tested for comparison. Bamboo species normally showed lower cell wall porosity (2.64%-3.75%) than wood species (3.98%-5.06%), indicating a more compact structure for bamboo than wood. A distinct species dependence of cell wall pore structures and porosity was also observed. Furthermore, the cell wall pore structure and porosity are shown to be tissue-specific, as the parenchyma cells exhibit higher pore volume and porosity compared to bamboo fibers. The obtained results give new explanations on the known facts that both bamboo and bamboo fibers exhibit higher biomass recalcitrance as compared to wood and bamboo parenchyma cells, constructing the base of pretreatment optimization and subsequent processing for bamboo-derived biofuels and biomaterials.


2020 ◽  
Vol 8 (12) ◽  
pp. 1931
Author(s):  
Ehsan Bari ◽  
Geoffrey Daniel ◽  
Nural Yilgor ◽  
Jong Sik Kim ◽  
Mohammad Ali Tajick-Ghanbary ◽  
...  

Fungal wood decay strategies are influenced by several factors, such as wood species, moisture content, and temperature. This study aims to evaluate wood degradation characteristics of spruce, beech, and oak after exposure to the white-rot fungi Pleurotusostreatus and Trametesversicolor. Both fungi caused high mass losses in beech wood, while spruce and oak wood were more resistant to decay. The moisture content values of the decayed wood correlated with the mass losses for all three wood species and incubation periods. Combined microscopic and chemical studies indicated that the two fungi differed in their decay behavior. While T. versicolor produced a decay pattern (cell wall erosion) typical of white-rot fungi in all wood species, P. ostreatus caused cell wall erosion in spruce and beech and soft-rot type I (cavity formation) decay in oak wood. These observations suggest that P. ostreatus may have the capacity to produce a wider range of enzymes/radicals triggered by the chemical composition of wood cell walls and/or local compositional variability within the cell wall.


Sign in / Sign up

Export Citation Format

Share Document