Characterization of particleboard made from oil heat-treated rubberwood particles at different mixing ratios

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6795-6810
Author(s):  
Nurul Fatiha Osman ◽  
Paimon Bawon ◽  
Seng Hua Lee ◽  
Pakhriazad Hassan Zaki ◽  
Syeed SaifulAzry Osman Al-Eldrus ◽  
...  

Particleboard was produced by mixing oil heat-treated rubberwood particles at different ratios, with the goal of achieving high dimensional stability. Rubberwood particles were soaked in palm oil for 2 h and heat treated at 200 °C for 2 h. The treated particles were soaked in boiling water for 30 min to remove oil and were tested for chemical alteration and thermal characterization via Fourier-transform infrared spectroscopy and thermogravimetric analysis. Particleboard was fabricated by mixing treated rubberwood particles (30%, 50%, and 70%) with untreated particles (70%, 50%, and 30%, respective to previous percentages) and bonded with urea-formaldehyde (UF) resin. The results revealed that oil-heat treated particles had greater thermal stability than the untreated particles. The addition of oil heat treated particles improved the physical properties of the particleboard with no significant reduction in mechanical strength. However, this was only valid for ratios of 70% untreated to 30% treated and 50% untreated to 50% treated. When a ratio of 70% oil heat treated particles was used, both the physical and mechanical properties were reduced drastically, due to bonding interference caused by excessive oil content. Particleboard made with a ratio of 5:5 (treated to untreated) exhibited the best physical and mechanical properties.

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4875 ◽  
Author(s):  
Pavlo Bekhta ◽  
Gregory Noshchenko ◽  
Roman Réh ◽  
Lubos Kristak ◽  
Ján Sedliačik ◽  
...  

The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4′-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.


CERNE ◽  
2014 ◽  
Vol 20 (2) ◽  
pp. 209-216 ◽  
Author(s):  
Setsuo Iwakiri ◽  
Rosilani Trianoski ◽  
Alexsandro Bayestorff da Cunha ◽  
Vinicus Gomes de Castro ◽  
Rafael Leite Braz ◽  
...  

This work aimed to evaluate the physical and mechanical properties of particleboard panels manufactured with wood particles from Sequoia sempervirens and Pinus taeda and urea-formaldehyde resin (UF), using different mixing ratios of the two species, namely 100%, 0%, 75%, 50% and 25% of sequoia particles. Properties evaluated included panel density and compaction ratio, water absorption and thickness swelling after 24 hours of immersion, internal bond and static bending (MOE and MOR). The low density of sequoia wood raised the compaction ratio of the panels and helped improve their mechanical properties and dimensional stability. Panels manufactured at the ratios of 100%, 75%, 50% and 25% sequoia to pine provided better results compared to panels manufactured with 100% pine. Results of MOE and MOR under static bending and of internal bond met the minimum requirements of standard EN 312:2003 in all treatments. Results revealed that Sequoia sempervirens has great potential for production of particleboard.


2018 ◽  
Vol 1 (1) ◽  
pp. 16-23
Author(s):  
Apri Heri Iswanto ◽  
Dita Sari Prabuningrum ◽  
Irawati Azhar ◽  
Supriyanto Supriyanto

The objective of this research was to evaluate the effect of length size particle on physical and mechanical properties of particleboard. Sorghum bagasse was cut into 3, 5, and 7 cm length size. Furthermore, particles were dried until reached of4% moisture content. Amount of 10% urea-formaldehyde (UF) resin used for binding. Hot pressing process conducted in 130C temperature for 10 minutes and 30 kg cm -2 pressure. The results showed that thickness swelling (TS) and internal bond (IB) did not fulfill of requirement of Japanese Industrial Standard (JIS) A 5908 (2003). According to all parameters, 3 cm length size of particle was resulting in the best properties.


CORD ◽  
2013 ◽  
Vol 29 (1) ◽  
pp. 4
Author(s):  
Izran K.

A study was undertaken to investigate the physical and mechanical properties of engineered coconut (Cocos nucifera) veneer (ECTV). The coconut trunks (40 – 50 years old) were obtained from Hutan Melintang, Perak and were peeled into veneers at Bestgrade Sdn. Bhd. The veneers were obtained from two different parts of coconut trunks viz inner and outer which were used to fabricate 5-ply engineered coconut veneers. The ECTVs were fabricated at FRIM’s Bio-Composite Laboratory. They were manufactured with urea formaldehyde (UF) resin and with three combinations namely 100% inner, 100% outer and alternate outer & inner veneers (mix). The densities for the engineered veneers made of 100% outer, 100% inner, and mixed layers were 944.1 kg/m3, 858.15 kg/m3 and 891.11 kg/m3, respectively. Results showed that the Modulus of Rupture (MOR) of the ECTV made from 100% outer veneers had the highest mean MOR value (88.69 MPa), followed by those made from the mixed veneers (74.35 MPa) and 100% inner (58.44 MPa), respectively.  On the other hand, the Modulus Of Elasticity (MOE) values were 10.12 Mpa for outer, 8,210 Mpa for inner and 10,075 Mpa for mixed. Overall, the testing results showed that the ECTV met the standard requirements.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1884 ◽  
Author(s):  
Hassani ◽  
Taghiyari ◽  
Schmidt ◽  
Maleki ◽  
Papadopoulos

The aim of this work is to investigate the effect of the fortification level of nanowollastonite on urea-formaldehyde resin (UF) and its effect on mechanical and physical properties of oriented strand lumbers (OSL). Two resin contents are applied, namely, 8% and 10%. Nanowollastonite is mixed with the resin at two levels (10% and 20%). It is found that the fortification of UF resin with 10% nanowollastonite can be considered as an optimum level. When nanowollastonite content is higher (that is, 20%), higher volume of UF resin is left over from the process of sticking the strips together, and therefore is absorbed by wollastonite nanofibers. The mechanism involved in the fortification of UF resin with nanowollastonite, which results in an improvement of thickness swelling values, can be attributed to the following two main factors: (i) nanowollastonite compounds making active bonds with the cellulose hydroxyl groups, putting them out of reach for bonding with the water molecules and (ii) high thermal conductivity coefficient of wollastonite improving the transfer of heat to different layers of the OSL mat, facilitating better and more complete resin curing. Since nanowollastonite contributes to making bonds between the wood strips, which consequently improves physical and mechanical properties, its use can be safely recommended in the OSL production process to improve the physical and mechanical properties of the panel.


Author(s):  
Thais Helena Sydenstricker Flores-Sahagun ◽  
Kelly Priscila Agapito ◽  
ROSA MARIA JIMENEZ AMEZCUA ◽  
Felipe Jedyn

2013 ◽  
Vol 2 (1) ◽  
pp. 20120033
Author(s):  
R. N. Singh ◽  
A. K. Bind ◽  
J. B. Singh ◽  
J. K. Chakravartty ◽  
V. Thomas Paul ◽  
...  

2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


Sign in / Sign up

Export Citation Format

Share Document