Dry grinding of waste wood fiberboard: Theoretical and practical aspects affecting the resulting fiber quality

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8152-8171
Author(s):  
Venera Matygulina ◽  
Natalya Chistova ◽  
Aleksandr Vititnev ◽  
Roman Chistov

This paper presents the results of research on the treatment of secondary wood fibre semi-finished materials using a dry-grinding-type rotary cutting mill and the possibility of their use in finished products for various purposes. The physical phenomena, processes, and regularities of the treatment of secondary wood fibre materials in dry processing conditions were determined and evaluated. The influence of grinding plant design parameters on wood fibre quality indices was evaluated. Mechanical effects on wood fibre waste of face-cross cutting (cutting, crumpling, collapsing, and breaking) and the dry grinding environment (breaking, collision, defibering, and fibrillation) was studied. These phenomena contribute to the formation of external and internal fibrillation of secondary wood fibre and an increase in the specific surface area. This is achieved in the absence of high temperatures and pressure, in the absence of chemical additives, and without the application of water and vapour. The effectiveness of secondary wood fibre semi-finished material treatment was demonstrated under dry processing conditions, thus confirming the environmental and economic feasibility of this method.

2020 ◽  
pp. 475-484
Author(s):  
Natal'ya Geral'dovna Chistova ◽  
Venera Nurullovna Matygulina

The paper discusses the results of a study on the use of fundamentally new equipment (rotary knife mill) for the preparation of secondary fiber waste in the air and the possibility of their full use in finished products for various purposes. In order to justify the effectiveness of the preparation and the feasibility of using secondary wood fiber semi-finished products by a dry grinding method, the physical phenomena and regularities of the mechanism for the preparation of secondary wood fiber semi-finished products by the proposed method are determined and investigated, which characterize the technological process of preparation in air and their possible future use as semi-finished products or in the manufacture of finished products products. The process of dissolution of wood fiber waste was studied, the mechanical effect on wood fiber waste due to face-cross cutting (cutting, crushing, flattening, breaking) and aerodynamic phenomena (breaking, collision, dissolution, fibrillation), contributing to the formation of external and internal fibrillation of the secondary wood fiber, is described. increase in specific surface in the absence of high temperatures and pressure, without the addition of chemical additives, without the use of water and steam. The performed studies allow us to propose a new method and system for the preparation of wood fiber waste by dry grinding, justifying their economic and environmental feasibility.


2020 ◽  
Vol 9 (1) ◽  
pp. 7-16

The conventional wastewater (WW) treatment plant includes physical, chemical, and biological treatment processes that can protect the receiving water bodies from water pollution. The common design constraints, challenges as well as environmental impact would make the wastewater treatment plant’s (WWTP) construction and operation more complex and demanding tasks. Major project constraints for WW plant design are economic, accessibility, fulfilling technical requirements, institutional set-up, health and environment, personnel capacity, and political commitment etc. Design methodology adopted in the current study included project location, unit selections, the design capacity, design period as well as proximity to the population and layout plan. The present manuscript discussed briefly about effluent quality requirements, design issues, environmental impacts, details, and safety concerns. It also highlighted the necessary flexibility to carry out satisfactorily within the desired range of influent WW characteristics and flows. In the present study, every step of the design was verified with Environmental Regulations and suggested to overcome all constraints while designing WWTPs so that standard operational code for the specific region could be implemented to achieve the best treatment performance. The results obtained from analytical calculation were optimized to achieve the best design parameters for field application. The optimized values also reduce the construction and operation cost during the field application.


2019 ◽  
Vol 1378 ◽  
pp. 032090
Author(s):  
R. A Ibikunle ◽  
I.F Titiladunayo ◽  
D. C Uguru-Okorie ◽  
C.O Osueke ◽  
A Olayanju

2016 ◽  
Vol 126 ◽  
pp. 1013-1027 ◽  
Author(s):  
Chiemeka Onyeka Okoye ◽  
Oğuz Solyalı ◽  
Onur Taylan

1998 ◽  
Vol 37 (8) ◽  
pp. 81-88 ◽  
Author(s):  
A. Jang ◽  
Y. S. Choi ◽  
In S. Kim

Laboratory tests of various chemical treatments for the immobilization of copper, nickel, and lead in soils typically found at mine facilities were evaluated. A series of batch, adsorption tests, and lab-scale continuous column tests were conducted to optimize the design parameters for the full-scale immobilization processes. The laboratory test program consisted of batch and column experiments to measure the leachability and subsequent immobilization of the single heavy metal, Cu2+, Pb2+, and Ni2+ in an artificial soil which was composed of bentonite and quartz fine sand. Batch equilibrium methods were used to test the ability of a large number of chemical additives to react with heavy metals in contaminated soil. The two best treatment chemicals (CaO and Na2S) for each soil-metal combination were selected for more detailed columns studies. The column tests were carried out in the acidic pH range. According to the results of the column leaching test, it was found that the degree of heavy metal leaching is highly dependent on pH. An adsorption test was performed under acidic conditions (pH 4) to evaluate bentonite as an additive to treat acid mine drainage (AMD).


Author(s):  
Michael Vollmer ◽  
Camille Pedretti ◽  
Alexander Ni ◽  
Manfred Wirsum

This paper presents the fundamentals of an evolutionary, thermo-economic plant design methodology, which enables an improved and customer-focused optimization of the bottoming cycle of a large Combined Cycle Power Plant. The new methodology focuses on the conceptual design of the CCPP applicable to the product development and the pre-acquisition phase. After the definition of the overall plant configuration such as the number of gas turbines used, the type of main cooling system and the related fix investment cost, the CCPP is optimized towards any criteria available in the process model (e.g. lowest COE, maximum NPV/IRR, highest net efficiency). In view of the fact that the optimization is performed on a global plant level with a simultaneous hot- and cold- end optimization, the results clearly show the dependency of the HRSG steam parameters and the related steam turbine configuration on the definition of the cold end (Air Cooled Condenser instead of Direct Cooling). Furthermore, competing methods for feedwater preheating (HRSG recirculation, condensate preheating or pegging steam), different HRSG heat exchanger arrangements as well as applicable portfolio components are automatically evaluated and finally selected. The developed process model is based on a fixed superstructure and copes with the full complexity of today’s bottoming cycle configurations as well with any constraints and design rules existing in practice. It includes a variety of component modules that are prescribed with their performance characteristics, design limitations and individual cost. More than 100 parameters are used to directly calculate the overall plant performance and related investment cost. Further definitions on payment schedule, construction time, operation regime and consumable cost results in a full economic life cycle calculation of the CCPP. For the overall optimization the process model is coupled to an evolutionary optimizer, whereas around 60 design parameters are used within predefined bounds. Within a single optimization run more than 100’000 bottoming cycle configurations are calculated in order to find the targeted optimum and thanks to today’s massive parallel computing resources, the solution can be found over night. Due to the direct formulation of the process model, the best cycle configuration is a result provided by the optimizer and can be based on a single-, dual or triple pressure system using non-reheat, reheat or double reheat configuration. This methodology enables to analyze also existing limitations and characteristics of the key components in the process model and assists to initiate new developments in order to constantly increase the value for power plant customers.


Author(s):  
M. D. Duran ◽  
A. Rovira

It is the purpose of this work to show how to select the best configuration as a function of the combined cycle power. It uses thermo-economic optimization technique based on flexible genetic algorithms (GA). These results will be based on a Thermoeconomic model developed in previous works, this maximizes the cash flow by choosing the correct parameters for the plant design — particularly those corresponding to the HRSG — subject to the restriction that hypothetical, but realistic turbines have already been chosen. This study begins with an analysis of the trends in the commercial gas turbines (GT) design. It was observed that in spite of the diverse companies, the design parameters as well as the turbine cost, follow certain trends depending on the turbine power. When a CCGT power plant is planned, once the GT is selected, is necessary to determine which configuration of the HRSG is the most appropriate in order to get the maximum performance and the best economical results. There is a wide variety of selections of CCGT power plants configurations. To facilitate the analysis of this ample number of CCGT systems we will apply our study to the following types of HRSG: Double pressure with and without reheater, Triple pressure levels with reheater and Triple pressure levels with reheater and supercritical pressure. As a result of this study it may be observed that some design trends should be established so as to decide which configuration (including supercritical cycles) is better to select to specific power.


1978 ◽  
Vol 100 (4) ◽  
pp. 566-570 ◽  
Author(s):  
B. Nimmo ◽  
R. Evans

This paper introduces and provides a first order thermal cycle analysis of a new power plant design, the absorption-regeneration power cycle. Preliminary analysis indicates that this new cycle may have potential for increased operating efficiencies compared to the modified Rankine cycle presently in use for most stationary electrical power production. Graphs are presented to illustrate calculated efficiencies as well as some important design parameters of the cycle. Research work on extending presently available thermo-chemical data required to improve the model analysis is suggested.


2020 ◽  
Vol 8 (5) ◽  
pp. 1703-1714 ◽  

Installation of solar PV arrays at utility scale is gaining popularity nowadays because of the significant reduction in the cost of components as well as the global push towards clean energy. Solar PV plants along with Parabolic Trough Collector Solar thermal plants has the highest potential among the available Renewable Energy (RE) technologies existing in the world. The objective of this paper is to optimize the performance of commercial Solar PV and PTC power plant for a potential location and hence to arrive on a most feasible configuration for the site. A representative site located in the Abudhabi region of UAE considered for the study. This paper also details on the annual performance of the proposed plant along with its technical aspects. PVSYST 6.7.7 and SAM software is used to design the optimal size and its specifications of a 100MW PV grid connected system at Abu Dhabi (UAE) region. The design and arrangements of the system verified using simulation results. The annual energy generated from the designed utility-scale solar PV plant from PVSYST 6.7.7 calculated as 161198MWh/year with a performance ratio (PR) of 74.8% per year where as for PTC it has calculated as 157152MWh/year by using SAM. The STC (Standard Testing Condition) for the specification of PV modules are normalized operating conditions when testing the module. Design parameters such as module orientation, array yield, reference yield, final yield, global horizontal irradiation (GHI), and ambient temperature and loss factors evaluated. To evaluate the economic feasibility of proposed plant, the levelized cost of electricity (LCOE) is determined as $0.04404/kwh for Solar PV and as $0.01533/kwh for PTC, which is used to calculate lifecycle cost and energy production


2018 ◽  
Vol 8 (10) ◽  
pp. 1920 ◽  
Author(s):  
Abdul Aziz ◽  
Muhammad Sajjad ◽  
Suho Kim ◽  
Md Saifuddin ◽  
Kwang Kim

In this work, the efficacy of volatile organic compounds (VOCs), such as benzene, toluene, ethylbenzene, and xylene, for the removal of indoor air in a heterogeneous photo-Fenton catalytic semi pilot reactor was investigated at room temperature. Fe-zeolite socony mobil (ZSM)-5 was used as the adsorptive catalytic material, which was coated on the polyethylene tubes as a solid support. The response of Fe-ZSM-5 to UV dry irradiation was investigated in terms of VOC degradation from the indoor air. Different coating materials were tested in order to achieve better binding and less pore blockage. Scanning electron microscope (SEM) micrographs of the Fe-ZSM-5 coated tubes were used for the morphological analysis of the tubes. A complete modular semi pilot reactor (12.51 L) was designed to accommodate the Fe-ZSM-5 coated tubes and UV lamps for UV irradiation, in order to achieve the degradation for VOC and the regeneration of the catalytic material. After completion of the setup, the plant design parameters, such as the linear velocity, surface volume loading rate (SVL), and space retention time (SRT), were calculated.


Sign in / Sign up

Export Citation Format

Share Document