scholarly journals A review on oil spill clean-up using bio-sorbent materials with special emphasis on utilization of kenaf core fibers

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8394-8416
Author(s):  
Jen Yen Tan ◽  
Siew Yan Low ◽  
Zhen Hong Ban ◽  
Parthiban Siwayanan

Thousands of oil spill incidents regrettably have occurred on a daily basis around the globe. Oil spills are a form of pollution that poses major catastrophic threats to marine ecosystems. Oil spill incidents commonly occur in the middle of the ocean, and the process to remove the oil becomes a great challenge. Absorbents, due to their good oil-absorbing characteristics, are becoming more popular nowadays as one of the effective oil spill clean-up methods. Among the many types of oil absorbents, plant fibers were also being studied to remove the oil spills from the sea surface. This paper reviews factors leading to oil spills, the detrimental effect of the oil spill on the environment, the oil spill removal methods, and the application of plant fibers as oil absorbent material. The paper also will highlight the latest development on the utilization of kenaf core fibers as oil-absorbent material and the use of oil absorbed kenaf core fibers as fuel briquette by taking advantage the high calorific value of the oil spill.

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8394-8416
Author(s):  
Jen Yen Tan ◽  
Siew Yan Low ◽  
Zhen Hong Ban ◽  
Parthiban Siwayanan

Thousands of oil spill incidents regrettably have occurred on a daily basis around the globe. Oil spills are a form of pollution that poses major catastrophic threats to marine ecosystems. Oil spill incidents commonly occur in the middle of the ocean, and the process to remove the oil becomes a great challenge. Absorbents, due to their good oil-absorbing characteristics, are becoming more popular nowadays as one of the effective oil spill clean-up methods. Among the many types of oil absorbents, plant fibers were also being studied to remove the oil spills from the sea surface. This paper reviews factors leading to oil spills, the detrimental effect of the oil spill on the environment, the oil spill removal methods, and the application of plant fibers as oil absorbent material. The paper also will highlight the latest development on the utilization of kenaf core fibers as oil-absorbent material and the use of oil absorbed kenaf core fibers as fuel briquette by taking advantage the high calorific value of the oil spill.


2001 ◽  
Vol 2001 (2) ◽  
pp. 975-981 ◽  
Author(s):  
Paula Jokuty

ABSTRACT When an oil spill occurs, there is an immediate need on the part of spill responders to know the properties of the spilled oil, as these will affect the behavior, fate, and effects of the oil, which will in turn affect the choice of countermeasures. However, it is often difficult or impossible to obtain a sample of the spilled oil, let alone the specialized analysis required to determine its properties, in a manner timely enough to suit the circumstances of an oil spill. Under the scrutiny of the media and the public, answers regarding the identity and predicted behavior of the spilled oil will be expected immediately, if not sooner. In preparation for such emergencies, the Emergencies Science Division (ESD) of Environment Canada has been collecting properties data for crude oils and oil products since 1984. Basic physical properties—density, viscosity, pour point, etc.—and environmentally relevant characteristics—evaporation rates, emulsion formation, chemical dispersibility—are measured. Properties related to health and safety—flash point, volatile organic compounds, sulfur—also are determined. In fact, nearly 20 different types of measurements are made for both fresh and weathered crude oils and oil products. To date data has been collected for more than 400 oils. For ease of access, this information is stored in an electronic database. The database in turn is accessible via the World Wide Web, and is also periodically printed in an easy-to-read catalogue format. The wide variety of data collected in the database also makes it possible to examine both simple and complex relationships that may exist between oil properties and spill behavior. This presentation will review the full scope of information determined and collected by ESD. Using tables and graphs, examples will be presented of the many ways in which this information can be viewed and used by both laymen and experts in the field of oil spills.


1977 ◽  
Vol 1977 (1) ◽  
pp. 211-213
Author(s):  
Warren A. Hovis ◽  
Donald R. Jones

ABSTRACT Existent NASA and National Oceanic and Atmospheric Administration (NOAA) satellite sensors are optimized for the viewing of high reflectivity atmospheric phenomena and land features. Thus, detection of surface pollutants or color differences in low reflectivity sea or fresh water is marginal at best. A few suspected oil spill sightings have been made by the NASA satellites Landsat 1 and 2 but their infrequent (once in every 18 days) orbital overpass precludes their use for detecting and monitoring oil spills on a daily basis. This paper describes the oil spill detection and monitoring capability of the Coastal Zone Color Scanner (CZCS), a six spectral band scanner specifically designed for ocean color imagery to fly on Nimbus G in 1978. NASA U-2 high altitude flights with a CZCS breadboard scanner onboard have demonstrated a capacity for detecting the natural oil seepage off the coast of Santa Barbara, California. The results will be described in terms of the satellite's capability to detect oil pollution of this relatively small magnitude or larger on a near daily global basis.


2013 ◽  
Vol 845 ◽  
pp. 955-959 ◽  
Author(s):  
J. Idris ◽  
Z. Ahmad ◽  
G.D. Eyu ◽  
Christian S. Chukwuekezie

The great negative impact of oil spill to the environment and living things over the years have necessitated the need for much study on improving and developing of sustainable natural absorbents in recent time. This paper reviews the adverse effect of oil spill, controls measures and proposes future recommendations for the usage of some agricultural products with promising oil absorbent potency.


2018 ◽  
Vol 1 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Agnieszka Ubowska ◽  
Katarzyna Jowtuch

Abstract The presence of flammable substances nearby hot surfaces in the engine rooms pose a fire hazard. Therefore the quick and effective removal of oil spills from these areas is of utmost importance. The simplest way is to use sorbent materials having the capacity to absorb oil substances. Oil sorbents comprise of a wide range of organic, inorganic and synthetic products. The choice of form and type of sorbent material depends on the intended application: type of spill, its size and location. The article describes the results of studies aimed to compare the absorbency of selected natural and synthetic sorbents in the context of their application in case of an oil spill in the engine room. Although the natural sorbents should not be used in water, because they absorb it and can in addition contaminate the seabed, they can be used to remove oil spills on the ship. After used they can be disposed on the ship by burning.


2021 ◽  
Vol 36 (4) ◽  
pp. 1-9
Author(s):  
Suresh Kumar Govindarajan ◽  
Avanish Mishra ◽  
Abhishek Kumar

The global lifestyle of this modern world has become more dependent on petroleum-based products, whose applications are involved almost everywhere. Since a large quantity of oil is being used on a daily basis, the spilling of oil by various means during its storage and transportation has become inevitable. This work focuses on the spilling of oil in a marine environment, generally referred to as an offshore oil spill, in contrast to an onshore oil spill associated with a terrestrial environment. These oil spills not only devastate the natural resources and unsettle the economy, they also jeopardize marine life, as well as human health. The remediation of an oil spill remains very challenging, when the disaster is associated with a large aerial extent. In this context, a sound understanding is required on the origin, seeping, composition and properties of the spilled oil in order to better monitor the spreading of the oil spill. In this manuscript, a detailed list of fundamental queries, which will be required to be addressed at the instance of an oil spill has been deduced, which will be extremely useful for the oil spill respondents as there are no previous studies that exclusively provide the type and nature of data required to be collected, immediately following an oil spill. Furthermore, this manuscript has deduced a list of sensitive and essential plots that will be required in order to analyse and forecast the spreading of an oil spill. An essence of weathering and its associated movement of oil spill has been included.


2020 ◽  
Vol 14 (3) ◽  
pp. 225-238
Author(s):  
Cynthia E.I. Torres ◽  
Thelma S. Quezada ◽  
Israel López ◽  
Idalia G. de la Fuente ◽  
Francisco E.L. Rodríguez ◽  
...  

Aims: The purpose of this work was to obtain a hydrophobic sorbent material with potential applications in oil spill remediation. Background: The accidents due to oil spills cause long-term ecological damage, especially in the aquatic environment. The cleaning of oil spills can be carried out by many methods and techniques, being absorbents the most attractive due to the possibility of recovery and complete elimination of the hydrocarbons in situ from the water surface. In recent years, interest in polymeric materials for oil spill remediation has increased due to its low cost, high stability, and recyclability. Objective: The objective of this work was the development of sorbent materials based on polymer wastes, such as Polyethylene Terephthalate (PET), obtained from recycled bottles, and recycled Polyurethane (PU), for its application in the recovery of oil spills. Methods: Sorbent materials were prepared from polymer wastes, using salt molds for the formation of porous materials with a composition of PU of 5, 10 and 15%, which were subsequently hydrophobized using carbon nanotubes or silica nanoparticles by dip-coating technique. Results and Discussion: The obtained hydrophobic sorbent materials were characterized by Scanning Electron Microscopy (SEM) and Infrared Spectroscopy (FTIR). The resulting absorbent has shown capacity to separate oil from water; the best result was obtained by the sponge of PET-PU (10% PU) hydrophobized with a suspension with low multi-wall carbon nanotubes (MWCNTs) concentration, obtaining an absorption capacity of 2.01 g/g. Conclusion: Besides the standard sorption capacity, these cheap sorbent materials had interesting properties like low density, high hydrophobicity and buoyancy, which could be applied in other applications related to solving oil spills.


1973 ◽  
Vol 1973 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Gerard P. Canevari

ABSTRACT In order to fully appreciate the development trend for the “next generation” chemical dispersants for oil spills, the current status of this field is briefly reviewed. Recent applications illustrate the specific beneficial potential role of chemical dispersants in the oil spill control, as well as their limitation. The present mechanism of dispersing oil spills by the application of chemical dispersants is well understood and is the subject of many technical papers. While there is some variation in the relative performance and toxicity of the many commercially available products, they all require mixing after application. In instances wherein the dispersant has been marginally effective, inadequate mixing was usually the reason. Thus, mixing is the limiting step rather than application. The mixing of an oil spill by boat propellers, fire hoses, etc., is laborious and time consuming. However, dispersant may be readily applied to large areas by aerial application similar to “crop dusting.” In some instances, the oil spill may even become inaccessible for convenient mixing (e.g., under piers, shallow water). Hence, the elimination (or minimizing) of the mixing step would be a major improvement in the dispersion process. The “next generation” oil spill dispersants will require little or no mixing energy and will approach spontaneous emulsification. The mechanism of “self-mixing” will be outlined in this presentation. Performance data comparing this generic type of chemical dispersant with the more conventional systems commonly used will illustrate the major differences. Another important aspect of this system is the resultant dispersed oil droplet size. The remaining concerns and other considerations requiring further study will be discussed.


Author(s):  
Paul D. Boehm ◽  
Robert I. Haddad

667037 ABSTRACT This paper provides a viewpoint on ways to blend and optimize the use of various scientific tools to address information needs as part of oil spill natural resource damage assessments (NRDAs). Oil spills are complex events of multidisciplinary interest, requiring the application of a blend of established, generally accepted approaches to answer the many scientific questions related to oil spill response and NRDAs arising during and after each spill. Each spill scenario is unique and demands different information, but central to all assessment strategies are questions around the needs for and the feasibility of collecting adequate representative field data versus (or more productively in concert with) the application of spill models, remembering that models alone can't create facts. Useful information also comes from considering the degree to which the processes and ambient measures in a new spill can be represented by extrapolations of data and information from prior spills. Through a discussion of a three-part “toolkit” or “triad” applied to different types of oil spill NRDAs, this discussion offers insights and suggestions, largely from a strategic scientific perspective, for optimizing the blend of these tools to sufficiently address the assessment of injuries to natural resources so restoration can be appropriately evaluated, scaled, planned, and implemented.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2468
Author(s):  
Gayathiri Verasoundarapandian ◽  
Nur Nadhirah Zakaria ◽  
Noor Azmi Shaharuddin ◽  
Khalilah Abdul Khalil ◽  
Nurul Aini Puasa ◽  
...  

Oil spill incidents are hazardous and have prolonged damage to the marine environment. Management and spill clean-up procedures are practical and rapid, with several shortcomings. Coco peat (CP) and coco fibre (CF) are refined from coconut waste, and their abundance makes them desirable for diesel spillage treatment. Using a filter-based system, the selectivity of coco peat sorbent was tested using CP, CF and peat-fibre mix (CPM). CP exhibited maximal diesel sorption capacity with minimal seawater uptake, thus being selected for further optimisation analysis. The heat treatment considerably improved the sorption capacity and efficiency of diesel absorbed by CP, as supported by FTIR and VPSEM–EDX analysis. Conventional one-factor-at-a-time (OFAT) examined the performance of diesel sorption by CP under varying parameters, namely temperature, time of heating, packing density and diesel concentration. The significant factors were statistically evaluated using response surface methodology (RSM) via Plackett–Burman design (PB) and central composite design (CCD). Three significant (p < 0.05) factors (time, packing density and diesel concentration) were identified by PB and further analysed for interactions among the parameters. CCD predicted efficiency of diesel absorbed at 59.92% (71.90 mL) (initial diesel concentration of 30% v/v) and the experimental model validated the design with 59.17% (71.00 mL) diesel sorbed at the optimised conditions of 14.1 min of heating (200 °C) with packing density of 0.08 g/cm3 and 30% (v/v) of diesel concentration. The performance of CP in RSM (59.17%) was better than that in OFAT (58.33%). The discoveries imply that natural sorbent materials such as CP in oil spill clean-up operations can be advantageous and environmentally feasible. This study also demonstrated the diesel-filter system as a pilot study for the prospective up-scale application of oil spills.


Sign in / Sign up

Export Citation Format

Share Document