Different Active Sites of LaCoO3 and LaMnO3 for CH4 Oxidation by Regulation of Precursor’s Ion Concentration

2020 ◽  
Vol 7 (1) ◽  
pp. 28-39
Author(s):  
Erhong Duan ◽  
2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Yoshifuru Nitta ◽  
Yudai Yamasaki

Abstract Lean-burn gas engines have recently attracted attention in the maritime industry, because they can reduce NOx, SOx, and CO2 emissions. However, since methane (CH4) is the main component of natural gas, the slipped methane, which is the unburned methane, likely contributes to global warming. It is thus important to make progress on exhaust after-treatment technologies for lean-burn gas engines. A Palladium (Pd) catalyst for CH4 oxidation is expected to provide a countermeasure for the slipped methane, because it can activate at lower exhaust temperature comparing with platinum. However, a de-activation in higher water (H2O) concentration should be overcome because H2O inhibits CH4 oxidation. This study was performed to investigate the effects of exhaust temperature or gas composition on active Pd catalyst sites to clarify CH4 oxidation performance in the exhaust gas of lean-burn gas engines. The authors developed the method of estimating effective active sites for the Pd catalyst at various exhaust temperatures. The estimation method is based on the assumption that active sites used for CH4 oxidation process can be shared with the active sites used for carbon mono-oxide (CO) oxidation. The molecular of chemisorbed CO on the active sites of the Pd catalyst can provide effective active sites for CH4 oxidation process. This paper introduces experimental results and verifications of the new method, showing that chemisorbed CO volume on a Pd/Al2O3 catalyst is increased with increasing Pd loading in 250–450 °C, simulated as a typical exhaust temperature range of lean-burn gas engines.


Author(s):  
Yoshifuru Nitta ◽  
Yudai Yamasaki

Abstract In the maritime industry, lean burn gas engines have been expected to reduce emissions such as NOx, SOx and CO2. On the other hand, the slipped methane, which is the unburned methane (CH4) emitted from lean burn gas engines have a concern for impact on global warming. It is therefore important to make a progress on the exhaust aftertreatment technologies for lean burn gas engines. As a countermeasure for the slipped methane, Palladium (Pd) catalyst for CH4 oxidation can be expected to provide one of the most feasible methods because Palladium (Pd) catalyst for CH4 oxidation can activate in the lower temperature. However, recent studies have shown that the reversible adsorption by water vapor (H2O) inhibits CH4 oxidation on the catalyst and deactivates its CH4 oxidation capacity. It can be known that the CH4 oxidation performance is influenced by active sites on the Pd catalyst. However, measuring methods for active sites on Pd catalyst under exhaust gas conditions could not be found. Authors thus proposed a dynamic estimation method for the quantity of effective active sites on Pd catalyst in exhaust gas temperature using water-gas shift reaction between the saturated chemisorbed CO and the pulse induced H2O. The previous study clarified the relationship between adsorbed CO volume and Pd loading in gas engine exhaust gas temperature and revealed the effects of flow conditions on the estimation of adsorbed CO volume. However, in order to improve CH4 oxidation performance on Pd catalyst under exhaust gas conditions, it is important that effects of support materials on active sites should clarify. This paper introduced experimental results of estimation of absorbed CO volume on different support materials of Pd catalysts by using the dynamic evaluation method. Experimental results show that chemisorbed CO volume on Pd/Al2O3 catalyst exhibits higher chemisorbed CO volume than that of Pd/SiO2 and Pd/Al2O3-SiO2 catalyst in 250–450 °C. These results can provide a part of the criteria for the application of Pd catalyst for reducing the slipped methane in exhaust gas of lean burn gas engines.


Author(s):  
Yoshifuru Nitta ◽  
Yudai Yamasaki

Abstract Lean-burn gas engines have recently attracted attentions in the maritime industry, because they can reduce NOx, SOx and CO2 emissions. However, since methane (CH4) is the main component of natural gas, the slipped methane which is the unburned methane emitted from the lean-burn gas engines likely contributes to global warming. It is thus important to make progress on exhaust aftertreatment technologies for lean-burn gas engines. A Palladium (Pd) catalyst for CH4 oxidation is expected to provide a countermeasure for slipped methane, because it can activate at lower exhaust gas temperature. However, a deactivation in higher water (H2O) concentration should be overcome, because H2O inhibits CH4 oxidation. This study was performed investigates the effects of exhaust gas temperature or gas composition on active Pd catalyst sites to clarify CH4 oxidation performance in the exhaust gas of lean-burn gas engines. The authors developed the method of estimating effective active sites for the Pd catalyst at various exhaust gas temperature. The estimation method is based on the assumption that active sites used for CH4 oxidation process can be shared with the active sites used for Carbon mono-oxide (CO) oxidation. The molecular of chemisorbed CO on the active sites of the Pd catalyst can provide effective active sites for CH4 oxidation process. To clarify the effects of exhaust gas temperature and compositions on active Pd catalyst sites, the authors developed an experimental system for the new estimation method. This paper introduces experimental results and verifications of the new method, showing that chemisorbed CO volume on a Pd/Al2O3 catalyst is increased with increasing Pd loading in 250–450 °C, simulated as a typical exhaust gas temperature range of lean-burn gas engines. The results provide a part of the criteria for the application of Pd catalysts to the reduction of slipped methane in exhaust gas of lean-burn gas engines.


2012 ◽  
Vol 119-120 ◽  
pp. 117-122 ◽  
Author(s):  
Lian Meng ◽  
Jian-Jun Lin ◽  
Zhi-Ying Pu ◽  
Liang-Feng Luo ◽  
Ai-Ping Jia ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
alaaS Abdelmoaty ◽  
Shaimaa El-Wakeel ◽  
Nady Fathy ◽  
AdlyA Hanna

Abstract In this paper, UiO-66 metal-organic framework (MOF) was prepared by a hydrothermal method and modified consequently with melamine (MUiO-66), as so as enhance the adsorption properties of these materials in liquid-phase adsorption. With respect to this, the adsorption of lead and cadmium divalent ions was performed under varying conditions of pH, metal ion concentration, contact time, adsorbent dose and temperature. Morphology, texture properties, functional groups, crystallinity and thermal properties of both MOFs were examined. UiO-66 composed of sphere-like particles and covered by layers of melamine with enhancing in crystallinity and active sites as well as the total surface area increased from 1080 to 1160 m2/g. The modified UiO-66 with melamine (MUiO-66) showed a notable adsorption capacity of 177.5 and 146.6 mg/g for Pb and Cd (II) ions, respectively. Adsorption of both metals fitted well with the pseudo-second-order kinetic and Langmuir models and controlled by a physisorption mechanism at pH of 5. Also, adsorption process is an endothermic in nature and desorption is achieved well for three cycles by MUiO-66. Therefore, UiO-66 and MUiO-66 obtained in this work have a great promise in adsorption of heavy metals such as Pb and Cd(II) ions from wastewater.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 191 ◽  
Author(s):  
Karoline Kvande ◽  
Dimitrios K. Pappas ◽  
Michael Dyballa ◽  
Carlo Buono ◽  
Matteo Signorile ◽  
...  

On our route towards a more sustainable future, the use of stranded and underutilized natural gas to produce chemicals would be a great aid in mitigating climate change, due to the reduced CO2 emissions in comparison to using petroleum. In this study, we investigate the performance of Cu-exchanged SSZ-13 and SAPO-34 microporous materials in the stepwise, direct conversion of methane to methanol. With the use of X-ray absorption spectroscopy, infrared (in combination with CO adsorption) and Raman spectroscopy, we compared the structure–activity relationships for the two materials. We found that SSZ-13 performed significantly better than SAPO-34 at the standard conditions. From CH4-TPR, it is evident that SAPO-34 requires a higher temperature for CH4 oxidation, and by changing the CH4 loading temperature from 200 to 300 °C, the yield (μmol/g) of SAPO-34 was increased tenfold. As observed from spectroscopy, both three- and four-fold coordinated Cu-species were formed after O2-activation; among them, the active species for methane activation. The Cu speciation in SAPO-34 is distinct from that in SSZ-13. These deviations can be attributed to several factors, including the different framework polarities, and the amount and distribution of ion exchange sites.


Author(s):  
Alexis T. Bell

Heterogeneous catalysts, used in industry for the production of fuels and chemicals, are microporous solids characterized by a high internal surface area. The catalyticly active sites may occur at the surface of the bulk solid or of small crystallites deposited on a porous support. An example of the former case would be a zeolite, and of the latter, a supported metal catalyst. Since the activity and selectivity of a catalyst are known to be a function of surface composition and structure, it is highly desirable to characterize catalyst surfaces with atomic scale resolution. Where the active phase is dispersed on a support, it is also important to know the dispersion of the deposited phase, as well as its structural and compositional uniformity, the latter characteristics being particularly important in the case of multicomponent catalysts. Knowledge of the pore size and shape is also important, since these can influence the transport of reactants and products through a catalyst and the dynamics of catalyst deactivation.


Author(s):  
Stephen R. Bolsover

The field of intracellular ion concentration measurement expanded greatly in the 1980's due primarily to the development by Roger Tsien of ratiometric fluorescence dyes. These dyes have many applications, and in particular they make possible to image ion concentrations: to produce maps of the ion concentration within living cells. Ion imagers comprise a fluorescence microscope, an imaging light detector such as a video camera, and a computer system to process the fluorescence signal and display the map of ion concentration.Ion imaging can be used for two distinct purposes. In the first, the imager looks at a field of cells, measuring the mean ion concentration in each cell of the many in the field of view. One can then, for instance, challenge the cells with an agonist and examine the response of each individual cell. Ion imagers are not necessary for this sort of experiment: one can instead use a system that measures the mean ion concentration in a just one cell at any one time. However, they are very much more convenient.


Author(s):  
C. Jacobsen ◽  
J. Fu ◽  
S. Mayer ◽  
Y. Wang ◽  
S. Williams

In scanning luminescence x-ray microscopy (SLXM), a high resolution x-ray probe is used to excite visible light emission (see Figs. 1 and 2). The technique has been developed with a goal of localizing dye-tagged biochemically active sites and structures at 50 nm resolution in thick, hydrated biological specimens. Following our initial efforts, Moronne et al. have begun to develop probes based on biotinylated terbium; we report here our progress towards using microspheres for tagging.Our initial experiments with microspheres were based on commercially-available carboxyl latex spheres which emitted ~ 5 visible light photons per x-ray absorbed, and which showed good resistance to bleaching under x-ray irradiation. Other work (such as that by Guo et al.) has shown that such spheres can be used for a variety of specific labelling applications. Our first efforts have been aimed at labelling ƒ actin in Chinese hamster ovarian (CHO) cells. By using a detergent/fixative protocol to load spheres into cells with permeabilized membranes and preserved morphology, we have succeeded in using commercial dye-loaded, spreptavidin-coated 0.03μm polystyrene spheres linked to biotin phalloidon to label f actin (see Fig. 3).


Author(s):  
W.G. Wier

A fundamentally new understanding of cardiac excitation-contraction (E-C) coupling is being developed from recent experimental work using confocal microscopy of single isolated heart cells. In particular, the transient change in intracellular free calcium ion concentration ([Ca2+]i transient) that activates muscle contraction is now viewed as resulting from the spatial and temporal summation of small (∼ 8 μm3), subcellular, stereotyped ‘local [Ca2+]i-transients' or, as they have been called, ‘calcium sparks'. This new understanding may be called ‘local control of E-C coupling'. The relevance to normal heart cell function of ‘local control, theory and the recent confocal data on spontaneous Ca2+ ‘sparks', and on electrically evoked local [Ca2+]i-transients has been unknown however, because the previous studies were all conducted on slack, internally perfused, single, enzymatically dissociated cardiac cells, at room temperature, usually with Cs+ replacing K+, and often in the presence of Ca2-channel blockers. The present work was undertaken to establish whether or not the concepts derived from these studies are in fact relevant to normal cardiac tissue under physiological conditions, by attempting to record local [Ca2+]i-transients, sparks (and Ca2+ waves) in intact, multi-cellular cardiac tissue.


Sign in / Sign up

Export Citation Format

Share Document