Control of fuel combustion in small and medium power boilers

Author(s):  
A.O. Zaporozhets ◽  
◽  
V.P. Babak

The monograph deals with the problems of increasing the effi ciency of fuel combustion and reducing emissions of harmful substances in boilers with a capacity of up to 3.5 MW. Approaches for the formation of stoichiometric air-fuel mixtures in boilers are developed. Th e method for indirect determination of the concentration of air components was developed, which allows to increase the metrological characteristics of gas-analyzing devices. Methods, algorithms and programs to automate the combustion control process, while ensuring the reliability of the data, are created. A system for monitoring the fuel combustion process was developed, and it was implemented on the basis of the NIISTU-5 boiler unit. For researchers, engineers, as well as lecturers and postgraduates of higher educational institutions and scientifi c institutions, working in the fi eld of engineering and optimization in the energy.

2015 ◽  
Vol 32 (12) ◽  
pp. 58-61
Author(s):  
Nikolay Vasilevich Penshin ◽  
◽  
Victor, Yurievich Ivlev ◽  

Author(s):  
Arthur Zaporozhets ◽  
Yurii Kuts

The efficiency of the functioning of boiler units depends on the availability of reliable information on the progress of technological processes. The lack of control and measuring systems for the composition of the exhaust gases leads to low efficiency of the boiler unit, in particular, due to poor-quality fuel combustion. Therefore, in modern operating conditions of boiler units, it is relevant to develop technological solutions focused on finding and minimizing the causes and mechanisms of the formation of harmful substances in exhaust gases. Due to the fact that replacement of outdated boiler units with new ones requires significant capital investments, a promising direction is the modernization of existing boiler units. It is a low-cost and efficient way of rational use of fuel while simultaneously reducing the level of harmful substances in exhaust gases. It remains relevant to ensure the functioning of the control systems for the composition of the air-fuel mixture (AFM) with a given speed and high reliability of maintaining the excess air ratio (EAR) at the stoichiometric level. In the article the high-quality algorithm is proposed for the operation of an automatic control system for the combustion of fuel in boilers of medium and low power by regulating the ratio of the components of the AFM for the burner with feedback according to the signals of the oxygen sensor. The algorithms for the operation of the frequency regulator of the ratio of the components of the AFM in various operating modes are considered. The developed algorithms allowed maintaining the stoichiometric air-fuel ratio in the boiler furnace, reducing the level of toxic emissions into the atmosphere and increasing the boiler efficiency by optimizing the fuel combustion process. The AFM ratio programmer is made in the LM Programmer technical programming environment and works with Windows operating systems (XP, Vista, 7, 8, 10) and oxygen sensors manufactured by Bosch. The visualization of the control process of the fuel combustion process is made in the technical programming environment LogWorks 3 and operates in the environment of Windows operating systems.


2020 ◽  
pp. 37-38
Author(s):  
I.K. Aleksandrov ◽  
V.A. Rakov ◽  
N.E. Dyimov

A method for determining of mechanical losses in an internal combustion engine is proposed, the principal difference of which is the rotation of the engine shaft with compressed air. This method provides high reliability results on reduction of fuel consumption and emissions of harmful substances. Keywords ICE, mechanical losses, tests, compressed air [email protected]


2020 ◽  
Vol 17 ◽  
Author(s):  
Mansureh Alizadeh ◽  
Mandana Amiri ◽  
Abolfazl Bezaatpour

: Amikacin is an aminoglycoside antibiotic used for many gram-negative bacterial infections like infections in the urinary tract, infections in brain, lungs and abdomen. Electrochemical determination of amikacin is a challenge in electroanalysis because it shows no voltammetric peak at the surface of bare electrodes. In this approach, a very simple and easy method for indirect voltammetric determination of amikacin presented in real samples. Gold nanoparticles were electrodeposited at the surface of glassy carbon electrode in constant potential. The effect of several parameters such as time and potential of deposition, pH and scan rates on signal were studied. The cathodic peak current of Au3+ decreased with increasing amikacin concentration. Quantitative analysis of amikacin was performed using differential pulse voltammetry by following cathodic peak current of gold ions. Two dynamic linear ranges of 1.0 × 10−8–1.0 × 10-7 M and 5.0 × 10−7–1.0 × 10-3 M were obtained and limit of detection was estimated 3.0× 10−9 M. The method was successfully determined amikacin in pharmaceutical preparation and human serum. The effect of several interference in determination of amikacin was also studied.


1994 ◽  
Vol 59 (10) ◽  
pp. 2227-2234 ◽  
Author(s):  
Václav Stužka ◽  
Jaromír Souček

A new method has been developed for the indirect determination of nitroso- and nitrophenols by atomic absorption spectrometry (AAS) after extraction of ionic associates involving bipyridylocopper(II) (CuDP) or phenanthrolinocopper(II) (CuPH) complexes. Nitrobenzene and methyl isobutyl ketone appeared to be suitable for the extraction. It was possible to determine several tenths to hundredths of a milligram of nitrophenol in a litre. Extractable associates with CuDP and CuPH are formed by phenols possessing two substituents or by higher molecular weight phenols such as naphthol or hydroxyquinoline. Monosubstituted phenols fail to form associates of this kind.


2021 ◽  
Vol 13 (8) ◽  
pp. 4405
Author(s):  
Miroslav Rimar ◽  
Olha Kulikova ◽  
Andrii Kulikov ◽  
Marcel Fedak

Waste is a product of society and one of the biggest challenges for future generations is to understand how to sustainably dispose of large amounts of waste. The main objective of this study was to determine the possibility and conditions of the decentralized combustion of non-hazardous municipal waste. The analysis of the combustion properties of a mixture of wood chips and 20–30% of municipal solid waste showed an improvement in the operating parameters of the combustion process. Analysis also confirmed that the co-combustion of dirty fuels and biomass reduced the risk of releasing minerals and heavy metals from fuel into the natural environment. Approximately 55% of the heavy metals passed into the ash. The analysis of municipal solid waste and fuel mixtures containing municipal solid waste for polycyclic aromatic hydrocarbons showed the risk of increasing polycyclic aromatic hydrocarbon concentrations in flue gases.


2021 ◽  
Vol 164 ◽  
pp. 106058
Author(s):  
Jakub Masac ◽  
Jan Lovic ◽  
Ernest Beinrohr ◽  
Frantisek Cacho

Sign in / Sign up

Export Citation Format

Share Document