Seasonal changes of the activity of quasi-stationary planetary waves in the stratosphere over the Antarctic

2006 ◽  
Vol 12 (4) ◽  
pp. 71-77
Author(s):  
A.V. Grytsai ◽  
◽  
O.M. Evtushevsky ◽  
1997 ◽  
Vol 102 (D4) ◽  
pp. 4437-4446 ◽  
Author(s):  
F. Kamalabadi ◽  
J. M. Forbes ◽  
N. M. Makarov ◽  
Yu. I. Portnyagin

2009 ◽  
Vol 27 (3) ◽  
pp. 1153-1173 ◽  
Author(s):  
A. H. Manson ◽  
C. E. Meek ◽  
T. Chshyolkova ◽  
X. Xu ◽  
T. Aso ◽  
...  

Abstract. Operation of a Meteor Radar at Eureka, Ellesmere Island (80° N, 86° W) began in February 2006. The first 12 months of wind data (82–97 km) are combined with winds from the Adventdalen, Svalbard Island (78° N, 16° E) Meteor Radar to provide the first contemporaneous longitudinally spaced observations of mean winds, tides and planetary waves at such high Arctic latitudes. Unique polar information on diurnal non-migrating tides (NMT) is provided, as well as complementary information to that existing for the Antarctic on the semidiurnal NMT. Zonal and meridional monthly mean winds differed significantly between Canada and Norway, indicating the influence of stationary planetary waves (SPW) in the Arctic mesopause region. Both diurnal (D) and semi-diurnal (SD) winds also demonstrated significantly different magnitudes at Eureka and Svalbard. Typically the D tide was larger at Eureka and the SD tide was larger at Svalbard. Tidal amplitudes in the Arctic were also generally larger than expected from extrapolation of high mid-latitude data. For example time-sequences from ~90 km showed D wind oscillations at Eureka of 30 m/s in February–March, and four day bursts of SD winds at Svalbard reached 40 m/s in June 2006. Fitting of wave numbers for the migrating and non-migrating tides (MT, NMT) successfully determines dominant tides for each month and height. For the diurnal tide, NMT with s=0, +2 (westward) dominate in non-summer months, while for the semi-diurnal tide NMT with s=+1, +3 occur most often during equinoctial or early summer months. These wave numbers are consistent with stationary planetary wave (SPW)-tidal interactions. Assessment of the global topographic forcing and atmospheric propagation of the SPW (S=1, 2) suggests these winter waves of the Northern Hemisphere are associated with the 78–80° N diurnal NMT, but that the SPW of the Southern Hemisphere winter have little influence on the summer Arctic tidal fields. In contrast the large SPW and NMT of the Arctic winter may be associated, consistent with Antarctic observations, with the observed occurrence of the semidiurnal NMT in the Antarctic summer.


2008 ◽  
Vol 26 (5) ◽  
pp. 1101-1108 ◽  
Author(s):  
A. V. Grytsai ◽  
O. M. Evtushevsky ◽  
G. P. Milinevsky

Abstract. Anomalies in the Antarctic total ozone and amplitudes of the quasi-stationary planetary waves in the lower stratosphere temperature during the winter and spring of 1988 and 2002 have been compared. Westward displacement of the quasi-stationary wave (QSW) extremes by 50°–70° relative to the preceding years of the strong stratospheric polar vortex in 1987 and 2001, respectively, was observed. A dependence of the quasi-stationary wave ridge and trough positions on the strength of the westerly zonal wind in the lower stratosphere is shown. Comparison of the QSW amplitude in the lower stratosphere temperature in July and August shows that the amplitude distribution with latitude in August could be considered as a possible indication of the future anomalous warming in Antarctic spring. In August 2002, the QSW amplitude of 10 K at the edge region of the polar vortex (60° S–65° S) preceded the major warming in September, whereas in August 1988, the highest 7 K amplitude at 55° S preceded the large warming in the next months. These results suggest that the peak value of the lower stratosphere temperature QSW amplitude and the peak latitudinal position in late winter can influence the southern polar vortex strength in spring.


2021 ◽  
pp. 1-53
Author(s):  
ZHE WANG ◽  
JIANKAI ZHANG ◽  
TAO WANG ◽  
WUHU FENG ◽  
YIHANG HU ◽  
...  

AbstractThe factors responsible for the size of Antarctic ozone hole in November are analyzed. Comparing two samples of anomalously large and small November ozone hole with respect to 1980–2017 climatology in November, the results show that the anomalously large ozone hole in austral late winter is not a precondition for the anomalously large ozone hole in November. The size of Antarctic ozone hole in November is mainly influenced by dynamical processes from the end of October to mid-November. During large November ozone hole events, weaker dynamical ozone transport appears from the end of October to mid-November, which is closely related to planetary wave divergence in the stratosphere between 60°S and 90°S. Further analyses indicate that the wave divergence is partially attributed to less upward propagation of planetary waves from the troposphere, which is associated with weak baroclinic disturbances at the end of October. Subsequently, zonal wind speed in the upper stratosphere intensifies, and the distance between critical layer (U=0) and wave reflecting surfaces becomes larger. As a result, more planetary waves are reflected and then wave divergence enhances. The processes responsible for the anomalously small Antarctic ozone holes in November are almost opposite to those for the anomalously large Antarctic ozone holes.


1995 ◽  
Vol 13 (6) ◽  
pp. 656-659
Author(s):  
R. P. Kane

Abstract. The October depletions in the Antarctic ozone spread to lower latitudes in early November in 1988, in late November in 1989, and in late October in 1990. The depletions were 10–15% for latitudes up to 40°S and smaller thereafter, and almost negligible at 25°S and beyond. However, for the southern hemisphere, the normal seasonal changes at middle latitudes from October to December are much larger (about 20%). Also, there are superposed fluctuations of about 20% over a few (5–6) days.


2008 ◽  
Vol 70 (10) ◽  
pp. 1336-1350 ◽  
Author(s):  
A.J.G. Baumgaertner ◽  
A.J. McDonald ◽  
R.E. Hibbins ◽  
D.C. Fritts ◽  
D.J. Murphy ◽  
...  

Author(s):  
Volodymyr Kravchenko ◽  
Oleksandr Evtushevsky ◽  
Asen Grytsai ◽  
Gennadii Milinevsky ◽  
Andrew Klekociuk

The ozone hole over Antarctica in the spring months of September–November 2017 was one of the smallest during the period of its existence. The analysis of the annual preconditions for the formation of the ozone hole, made by the authors earlier, determined the criterion for estimation of its possible state in the next spring season. The criterion is the amplitude of planetary waves in the stratospheric temperature averaged for August (last month of the Antarctic winter). Dynamical disturbances caused by planetary waves in the winter months make a significant contribution to the variations in ozone losses in the spring. Already in the late August 2017, a conclusion was made on the possible ozone hole weakening in the following months to about the third smallest value of its area in the past two decades. Satellite observations have confirmed a significant decrease in the ozone hole area and stratospheric ozone losses in the southern polar region in 2017. The results of the work are important not only for predicting anomalous ozone losses in the spring months, but also for estimations of possible changes in ultraviolet radiation that reaches the surface and influences the ecosystem of the seas and oceans in the subantarctic zone.


Sign in / Sign up

Export Citation Format

Share Document