scholarly journals Sensitivity to Mn content mechanical properties of phase composition of ADI

2021 ◽  
Vol 100 (4) ◽  
pp. 3-15
Author(s):  
K. О. Gogaev ◽  
◽  
Yu. M. Podrezov ◽  
S. M. Voloshchenko ◽  
M.G. Askerov ◽  
...  

The effect of manganese content on the phase composition and mechanical properties was studied on ADI materials that are isothermally quenchеd at different temperatures. ADI samples with Mn content of 0.78% and 0.24% were analyzed. The final structure of the cast iron was created by austenitizing heating at 900 ° C for 30 minutes. and subsequent isothermal quenching in liquid tin at temperatures of 310, 330, 350, 380 ° C for samples with high manganese content and at 350, 370 ° C for samples with low content. It is shown that increasing the manganese content increases the amount of residual austenite under the same quenching conditions. This enhances the positive role of the TRIP effect on the hardening processes. In particular, ADI with a high content of Mn show a higher rate of strengthening at the initial region of loading diagram, higher hardness and increased damping capacity. Instead, due to the embrittlement action of manganese, such materials have lower mechanical characteristics, which determined fracture moment. It was found that for the same quenching conditions, deformation to fracture and toughness are reduced by half on samples with higher manganese content. The negative effect of manganese on the fatigue is less significant, because the embrittlement action is compensated by phase transformations in the crack head, which inhibits its spread under cyclic loading. Due to the fact that manganese enhances the positive role of the TRIP effect but decrease fracture résistance, it is proposed to use ADI materials with high Mn content in products that operate in conditions of wear but are not subject to extreme stress. Keywords: ADI materials, manganese alloying, isothermal hardening, TRIP effect, retained austenite, strengthening, hardness. damping capacity.

2006 ◽  
Vol 503-504 ◽  
pp. 37-44 ◽  
Author(s):  
Rimma Lapovok

Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under severe plastic deformation. It is believed that the stress-strain characteristics are uniform in a cross-section of the billet and this uniformity of the stress-strain distribution ensures the uniformity of microstructure and mechanical properties in ECAE processed billet. However, some experimental data such as the fracture of the extruded billet, which is initiated at the inner surface of the sample, has caused doubts about uniformity of stress-strain distribution. This non-uniformity has been proved recently by Finite Element Simulation. In this paper the studies of the positive role of the applied back-pressure during ECAE are reviewed and the influence of a back-pressure on the uniformity of the stress-strain distribution, strain localisation, die corner filing, and the prevention of fracture is shown. The effect of back-pressure on grain refinement and improvement in mechanical properties is emphasized. The paper summarises our results from over seven years of work using a unique machine for ECAE with computer-controlled back-pressure and velocity of the backward punch.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3551
Author(s):  
Marina León-Calero ◽  
Sara Catherine Reyburn Valés ◽  
Ángel Marcos-Fernández ◽  
Juan Rodríguez-Hernandez

Additive manufacturing (AM) is a disruptive technology that enables one to manufacture complex structures reducing both time and manufacturing cost. Among the materials commonly used for AM, thermoplastic elastomers (TPE) are of high interest due to their energy absorption capacity, energy efficiency, cushion factor or damping capacity. Previous investigations have exclusively focused on the optimization of the printing parameters of commercial TPE filaments and the structures to analyse the mechanical properties of the 3D printed parts. In the present paper, the chemical, thermal and mechanical properties for a wide range of commercial thermoplastic polyurethanes (TPU) filaments were investigated. For this purpose, TGA, DSC, 1H-NMR and filament tensile strength experiments were carried out in order to determine the materials characteristics. In addition, compression tests have been carried out to tailor the mechanical properties depending on the 3D printing parameters such as: infill density (10, 20, 50, 80 and 100%) and infill pattern (gyroid, honeycomb and grid). The compression tests were also employed to calculate the specific energy absorption (SEA) and specific damping capacity (SDC) of the materials in order to establish the role of the chemical composition and the geometrical characteristics (infill density and type of infill pattern) on the final properties of the printed part. As a result, optimal SEA and SDC performances were obtained for a honeycomb pattern at a 50% of infill density.


2017 ◽  
Vol 891 ◽  
pp. 209-213 ◽  
Author(s):  
Ludmila Kučerová ◽  
Hana Jirková ◽  
Bohuslav Mašek

Three low alloyed transformation induced plasticity (TRIP) steels with 0.2%C were used in this work. The first one was based on the most common and popular 0.2%C - 1.5%Mn - 1.8%Si concept and was used as a reference material. The second steel was further micro-alloyed by 0.06% of Niobium. The third steel was designed with lower manganese content of 0.6% and additional alloying by 0.8% of Chromium. Thermo-mechanical processing with incorporated incremental deformation was applied to each steel. Various cooling rates and numbers of deformation steps were tested with regard to final microstructure and properties. After this optimization, microstructures with the potential to utilize TRIP effect were achieved for all steels. Very good mechanical properties were obtained with ductility typically in the interval of 30-40% and the tensile strengths in the range of 680-835 MPa.


Author(s):  
Yufei Liu ◽  
Min He ◽  
Daohai Zhang ◽  
Qian Zhao ◽  
Shu-Hao Qin ◽  
...  

In this work, nylon 6/ P(N-phenylmaleimide-alt-styrene) blends were prepared by melt blending, and the mechanical, heat-resistant, crystallographic and dynamical mechanical properties of nylon 6/ P(N-phenylmaleimide-alt-styrene) blends with different contents were investigated and analyzed. The results showed that the mechanical properties decreased with increasing PNS, while the heat deflection temperature (HDT), relative crystallinity (Xn), and storage modulus (G’) increased with increasing PNS. The results of differential Scanning Calorimetry (DSC) proved the PNS played the positive role of nucleating PA6. And the results of dynamic mechanical analysis (DMA) proved the PNS could improve the rigidity of PA6/PNS blends. From the SEM, these PNS domains were between 0.2 and 4 μm in diameter. The experimental results indicated that the addition of PNS improved the rigidity of PA6/PNS blends, and then improved the heat-resistant property.


2011 ◽  
Vol 399-401 ◽  
pp. 254-258
Author(s):  
Li Hui Wang ◽  
Di Tang ◽  
Hai Tao Jiang ◽  
Ji Bin Liu ◽  
Yu Chen

By analysis of TWIP Steels with different manganese content, the results showed that the microstructures and properties had been changed with different Mn content. The elongation of the tested steel with 22.5% Mn was high for 55.5 % and n value of that reached to 0.360. When Mn content of the tested steel was 17.9%, the yield and tensile strength were higher and its elongation was lower for the tested steel than that of the tested steel with 22.5% Mn. The microstructures of the tested steel with high Mn content were austenite before and after being stretched at room temperature. Mn content was decreased and the microstructure of the tested steel after being stretched had a small amount of martensite transformation at room temperature. That is to say, double effect with TWIP and TRIP had occurred, but TWIP effect was dominant. TWIP effect increased plasticity and strain hardening capacity to improve formability. TRIP effect was mainly to improve strength so as to further attain the strength of the tested steel.


Author(s):  
Yufei Liu ◽  
Min He ◽  
Daohai Zhang ◽  
Qian Zhao ◽  
Shu-Hao Qin ◽  
...  

In this work, nylon 6/ P(N-phenylmaleimide-alt-styrene) blends were prepared by melt blending, and the mechanical, heat-resistant, crystallographic and dynamical mechanical properties of nylon 6/ P(N-phenylmaleimide-alt-styrene) blends with different contents were investigated and analyzed. The results showed that the mechanical properties decreased with increasing PNS, while the heat deflection temperature (HDT), relative crystallinity (Xn), and storage modulus (G’) increased with increasing PNS. The results of differential Scanning Calorimetry (DSC) proved the PNS played the positive role of nucleating PA6. And the results of dynamic mechanical analysis (DMA) proved the PNS could improve the rigidity of PA6/PNS blends. From the SEM, these PNS domains were between 0.2 and 4 μm in diameter. The experimental results indicated that the addition of PNS improved the rigidity of PA6/PNS blends, and then improved the heat-resistant property.


2018 ◽  
Vol 34 (4) ◽  
pp. 229-237 ◽  
Author(s):  
Francesca Chiesi ◽  
Andrea Bonacchi ◽  
Caterina Primi ◽  
Alessandro Toccafondi ◽  
Guido Miccinesi

Abstract. The present study aimed at evaluating if the three-item sense of coherence (SOC) scale developed by Lundberg and Nystrom Peck (1995) can be effectively used for research purpose in both nonclinical and clinical samples. To provide evidence that it represents adequately the measured construct we tested its validity in a nonclinical (N = 658) and clinical sample (N = 764 patients with cancer). Results obtained in the nonclinical sample attested a positive relation of SOC – as measured by the three-item SOC scale – with Antonovsky’s 13-item and 29-item SOC scales (convergent validity), and with dispositional optimism, sense of mastery, anxiety, and depression symptoms (concurrent validity). Results obtained in the clinical sample confirmed the criterion validity of the scale attesting the positive role of SOC – as measured by the three-item SOC scale – on the person’s capacity to respond to illness and treatment. The current study provides evidence that the three-item SOC scale is a valid, low-loading, and time-saving instrument for research purposes on large sample.


Sign in / Sign up

Export Citation Format

Share Document