scholarly journals ASSESSMENT OF THE ECONOMIC EFFECT OF ENERGY STORAGE SYSTEM PROVIDING THE BAL-ANCING SERVICES IN THE IPS OF UKRAINE

Author(s):  
E.V. Parus ◽  
◽  
I.V. Blinov ◽  
D.O. Olefir ◽  
◽  
...  

The article presents a simulation model for estimating the economic effect of the energy storage systems providing the balancing electricity to the Transmission System Operator in the balancing market segment. The model simulates the serial charge and discharge of storage (i.e., sequential provision of unloading and loading services). Peculiarities of considering the cost of purchase, installation, and maintenance of energy storage systems with reduction both to the guaranteed service life and the guaranteed resource of charge/discharge cycles are given. An example of the application of the simulation model for estimating the economic effect and payback period of energy storage systems in the provision of electricity balancing services in the balancing market segment is shown. Ref. 15.

2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2019 ◽  
Vol 11 (1) ◽  
pp. 186 ◽  
Author(s):  
Byuk-Keun Jo ◽  
Seungmin Jung ◽  
Gilsoo Jang

Energy storage systems are crucial in dealing with challenges from the high-level penetration of renewable energy, which has inherently intermittent characteristics. For this reason, various incentive schemes improving the economic profitability of energy storage systems are underway in many countries with an aim to expand the participation rate. The electricity charge discount program, which was introduced in 2015 in Korea, is one of the policies meant to support the economic feasibility of demand-side energy storage systems. This paper quantitatively evaluated the impact of the electricity charge discount program on the economic feasibility of behind-the-meter energy storage systems. In this work, we first summarized how electricity customers can benefit from behind-the-meter energy storage systems. In addition, we represented details of the structure that make up the electricity charge discount program, i.e., how the electricity charge is discounted through the discount scheme. An optimization problem that establishes a charge and discharge schedule of an energy storage system to minimize each consumer’s electricity expenditure was defined and formulated as well. The case study results indicated that the electricity charge discount program has improved the profitability of behind-the-meter energy storage systems, and this improved profitability led to investment in behind-the-meter energy storage systems in Korea. As a result of the electricity charge discount program, Korea’s domestic demand side energy storage system market size, which was only 27 billion dollars in 2015 in Korea, has grown to 825 billion dollars in 2018.


Author(s):  
Xiao Ping Wu ◽  
Masataka Mochizuki ◽  
Koichi Mashiko ◽  
Thang Nguyen ◽  
Tien Nguyen ◽  
...  

In this paper, design and economic analysis for applying a novel type of heat pipe into cold energy storage systems have been proposed and discussed. The heat pipe cold energy storage systems can be designed into several types that are ice storage, cold water storage and pre-cool heat exchanger. Those systems can be used for co-operating with conventional chiller system for cooling data centers. The heat load used for discussing in this paper is 8800 kW which represents a large scale data center. The methodology addressed in this paper can be also converted into the middle and small sizes of the data centers. This type of storage system will help to downsize the chiller and decrease its running time that would be able to save significant electricity cost and decrease green house gas emissions from the electricity generation. The proposed systems can be easily connected into the existing conventional systems without major design changes. The analysis in this paper is using Air Freezing Index AFI >= 400 °C-days/year for sizing the heat pipe modules. For the locations where AFI has different value the storage size will be varied accordingly. The paper also addressed a result that an optimum size of cold energy storage system that should be designed at a level to handle 60% of total yearly heat load of a data center.


Author(s):  
Sammy Houssainy ◽  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet’s temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3498 ◽  
Author(s):  
Tiezhou Wu ◽  
Wenshan Yu ◽  
Lujun Wang ◽  
Linxin Guo ◽  
Zhiquan Tang

Traditional hierarchical control of the microgrid does not consider the energy storage status of a distributed hybrid energy storage system. This leads to the inconsistency of the remaining capacity of the energy storage system in the process of system operation, which is not conducive to the safe and stable operation of the system. In this paper, an improved hierarchical control strategy is proposed: the first allocation layer completes the allocation between the distribution energy storage systems considering the state of hybrid energy storage systems, and the second allocation layer realizes the allocation within the hybrid energy storage systems based on variable time constant low-pass filtering. Considering the extreme conditions of energy storage systems, the transfer current is introduced in the second allocation process. The SOC (stage of charge) of the supercapacitor is between 40% and 60%, which ensures that the supercapacitor has enough margin to respond to the power demand. An example of a 300 MW photovoltaic microgrid system in a certain area is analyzed. Compared with the traditional hierarchical control, the proposed control strategy can reduce the SOC change of a hybrid energy storage system by 9% under the same conditions, and make the supercapacitor active after power stabilization, which is helpful to the stable operation of the microgrid.


Author(s):  
Ilker Durukan ◽  
Stephen Ekwaro-Osire ◽  
Stephen B. Bayne

Most recent grid codes require wind turbines to contribute to the recovery of frequency drops in the grid. More of the recently build wind turbines use variable speed generators. Unlike fixed speed generators, these generators do not naturally contribute to the recovery of the frequency drop since the rotor rpm is decoupled from the grid frequency. This decoupling is achieved by controller and power conditioning units. The studies reviewed in this paper focused on the design of such a controller so that the wind turbine could react to frequency drops. Another approach to responding to frequency drops is to connect an energy storage system to the DC bus of variable speed generator. Flywheels have been used as energy storage systems to fill energy gaps in several applications and can be used for frequency recovery application for wind turbines as well. The objective of this study was to demonstrate the improvement of frequency stability of wind turbines connected to electrical grids in the presence of flywheel energy storage systems (FESS). Studies reviewed show that FESS can enhance the power quality and frequency stability of wind turbines connected to an electrical grid.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6013
Author(s):  
Andrés Carro ◽  
Ricardo Chacartegui ◽  
Carlos Tejada ◽  
Georgios Gravanis ◽  
Muhammad Eusha ◽  
...  

Thermochemical energy storage systems from carbonates, mainly those based on calcium carbonate, have been gaining momentum in the last few years. However, despite the considerable interest in the process, the Technology Readiness Level (TRL) is still low. Therefore, facing the progressive development of the technology at different scales is essential to carry out a comprehensive risk assessment and a Failure Mode Effect and Analysis (FMEA) process to guarantee the safety and operation of the technology systems. In this study, the methodology was applied to a first-of-its-kind prototype, and it is a valuable tool for assessing safe design and operation and potential scaling up. The present work describes the methodology for carrying out these analyses to construct a kW-scale prototype of an energy storage system based on calcium carbonate. The main potential risks occur during the testing and operation stages (>50% of identified risks), being derived mainly from potential overheating in the reactors, failures in the control of the solar shape at the receiver, and potential failures of the control system. Through the assessment of Risk Priority Numbers (RPNs), it was identified that the issues requiring more attention are related to hot fluid path to avoid loss of heat transfer and potential damages (personal and on the facilities), mainly due to their probability to occur (>8 on a scale of 10). The results derived from the FMEA analysis show the need for specific control measures in reactors, especially in the calciner, with high operation temperatures (1000 °C) and potential effects of overheating and corrosion.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qing Xue ◽  
Zhen Wang ◽  
Yuqing Zhang

Alongside the rapid expansion of wind power installation in China, wind curtailment is also mounting rapidly due to China’s energy endowment imbalance. The hydrogen-based wind-energy storage system becomes an alternative to solve the puzzle of wind power surplus. This article introduced China’s energy storage industry development and summarized the advantages of hydrogen-based wind-energy storage systems. From the perspective of resource conservation, it estimated the environmental benefits of hydrogen-based wind-energy storages. This research also builds a valuation model based on the Real Options Theory to capture the distinctive flexible charging and discharging features of the hydrogen-based wind-energy storage systems. Based on the model, simulation results, including the investment value and operation decision of the hydrogen energy storage system with different electricity prices, system parameters, and different levels of subsidies, are presented. The results show that the hydrogen storage system fed with the surplus wind power can annually save approximately 2.19–3.29 million tons of standard coal consumption. It will reduce 3.31–4.97 million tons of CO2, SO2, NOx, and PM, saving as much as 286.6–429.8 million yuan of environmental cost annually on average. The hydrogen-based wind-energy storage system’s value depends on the construction investment and operating costs and is also affected by the mean-reverting nature and jumps or spikes in electricity prices. The market-oriented reform of China’s power sector is conducive to improve hydrogen-based wind-energy storage systems’ profitability. At present, subsidies are still essential to reduce initial investment and attract enterprises to participate in hydrogen energy storage projects.


Author(s):  
J. McDonough ◽  
K. Jebakumar ◽  
F. Chiara ◽  
M. Canova ◽  
K. Koprubasi

Alternative energy storage systems (AESS) are receiving considerable interest today for low-cost mild-hybrid vehicles where the electrical system is substituted with mechanical or hydraulic energy storage. As these technologies are being explored, simulation tools become helpful to predict the behavior of the energy storage system during vehicle use, as well as to conduct comparative studies evaluating the energy and power density, fuel economy improvement, system weight and costs. This paper presents an energy-based modeling approach to characterize the low-frequency dynamic behavior of alternative energy storage systems for hybrid vehicle applications, with the ability to predict the energy flows and sources of energy loss during driving operations. The model aims at evaluating the potential, in terms of efficiency and fuel economy improvement, offered by non-electrified energy storage systems, such as mechanical (flywheels) or hydraulic (accumulators). The modeling tool developed is able to provide a characterization of the performance of each of the two systems starting from a characterization of the components energy conversion behavior. The paper includes a simulation study where the performance of a mechanical and hydraulic energy storage system are compared on a forward-oriented hybrid vehicle simulator, with the objective of characterizing and comparing the energy recuperation process and the energy efficiency of the two systems.


2016 ◽  
Vol 3 (6) ◽  
pp. 517-535 ◽  
Author(s):  
Jeonghun Kim ◽  
Jaewoo Lee ◽  
Jungmok You ◽  
Min-Sik Park ◽  
Md Shahriar Al Hossain ◽  
...  

This review summarizes the synthesis of conductive polymers with different chemical structures in various ways and also addresses their widespread recent development for energy storage system applications.


Sign in / Sign up

Export Citation Format

Share Document