scholarly journals Equation of State of a Cell Fluid Model with Allowance for Gaussian Fluctuations of the Order Parameter

2020 ◽  
Vol 65 (12) ◽  
pp. 1080
Author(s):  
I.V. Pylyuk ◽  
O.A. Dobush

The paper is devoted to the development of a microscopic description of the critical behavior of a cell fluid model with allowance for the contributions from collective variables with nonzero values of the wave vector. The mathematical description is performed in the supercritical temperature range (T > Tc) in the case of a modified Morse potential with additional repulsive interaction. The method, developed here for constructing the equation of state of the system by using the Gaussian distribution of the order parameter fluctuations, is valid beyond an immediate vicinity of the critical point for wide ranges of the density and temperature. The pressure of the system as a function of the chemical potential and density is plotted for various fixed values of the relative temperature, both with and without considering the above-mentioned contributions. Compared with the results of the zero-mode approximation, the insignificant role of these contributions is indicated for temperatures T > Tc. At T < Tc, they are more significant.

2020 ◽  
Vol 65 (5) ◽  
pp. 428
Author(s):  
M. P. Kozlovskii ◽  
O. A. Dobush

The present article gives a theoretical description of a first-order phase transition in the cell fluid model with a modified Morse potential and an additional repulsive interaction. In the framework of the grand canonical ensemble, the equation of state of the system in terms of chemical potential–temperature and terms of density–temperature is calculated for a wide range of the density and temperature. The behavior of the chemical potential as a function of the temperature and density is investigated. The maximum and minimum admissible values of the chemical potential, which approach each other with decreasing the temperature, are exhibited. The existence of a liquid-gas phase transition in a limited temperature range below the critical Tc is established.


2020 ◽  
Author(s):  
Quentin Peter ◽  
Raphaël Jacquat ◽  
Therese Herling ◽  
Pavan Challa ◽  
Tadas Kartanas ◽  
...  

Abstract Living systems are characterised by their spatially highly inhomogeneous nature which is susceptible to modify fundamentally the behaviour of biomolecular species, including the proteins that underpin biological functionality in cells. Spatial gradients in chemical potential are known to lead to strong transport effects for colloidal particles, but their effect on molecular scale species such as proteins has remained largely unexplored. Here we demonstrate with microfluidic measurements that individual proteins can undergo strong diffusiophoretic motion in salt gradients in a manner which is sufficient to overcome diffusion and lead to dramatic changes in their spatial organisation on the scale of a cell. Moreover, we demonstrate that this phenomenon can be used to control the motion of proteins in microfluidics devices. These results open up a path towards a physical understanding of the role of gradients in living systems in the spatial organisation of macromolecules and highlight novel routes towards protein sorting applications on device.


2018 ◽  
Vol 21 (4) ◽  
pp. 43502 ◽  
Author(s):  
Kozlovskii ◽  
Pylyuk ◽  
Dobush

2020 ◽  
Vol 16 (34) ◽  
pp. 2853-2861
Author(s):  
Yanli Li ◽  
Rui Yang ◽  
Limo Chen ◽  
Sufang Wu

CD38 is a transmembrane glycoprotein that is widely expressed in a variety of human tissues and cells, especially those in the immune system. CD38 protein was previously considered as a cell activation marker, and today monoclonal antibodies targeting CD38 have witnessed great achievements in multiple myeloma and promoted researchers to conduct research on other tumors. In this review, we provide a wide-ranging review of the biology and function of the human molecule outside the field of myeloma. We focus mainly on current research findings to summarize and update the findings gathered from diverse areas of study. Based on these findings, we attempt to extend the role of CD38 in the context of therapy of solid tumors and expand the role of the molecule from a simple marker to an immunomodulator.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Metzner ◽  
F. Hörsch ◽  
C. Mark ◽  
T. Czerwinski ◽  
A. Winterl ◽  
...  

AbstractChemotaxis enables cells to systematically approach distant targets that emit a diffusible guiding substance. However, the visual observation of an encounter between a cell and a target does not necessarily indicate the presence of a chemotactic approach mechanism, as even a blindly migrating cell can come across a target by chance. To distinguish between the chemotactic approach and blind migration, we present an objective method that is based on the analysis of time-lapse recorded cell migration trajectories: For each movement step of a cell relative to the position of a potential target, we compute a p value that quantifies the likelihood of the movement direction under the null-hypothesis of blind migration. The resulting distribution of p values, pooled over all recorded cell trajectories, is then compared to an ensemble of reference distributions in which the positions of targets are randomized. First, we validate our method with simulated data, demonstrating that it reliably detects the presence or absence of remote cell-cell interactions. In a second step, we apply the method to data from three-dimensional collagen gels, interspersed with highly migratory natural killer (NK) cells that were derived from two different human donors. We find for one of the donors an attractive interaction between the NK cells, pointing to a cooperative behavior of these immune cells. When adding nearly stationary K562 tumor cells to the system, we find a repulsive interaction between K562 and NK cells for one of the donors. By contrast, we find attractive interactions between NK cells and an IL-15-secreting variant of K562 tumor cells. We therefore speculate that NK cells find wild-type tumor cells only by chance, but are programmed to leave a target quickly after a close encounter. We provide a freely available Python implementation of our p value method that can serve as a general tool for detecting long-range interactions in collective systems of self-driven agents.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 111
Author(s):  
Cheung-Hei Yeung ◽  
Lap-Ming Lin ◽  
Nils Andersson ◽  
Greg Comer

The I-Love-Q relations are approximate equation-of-state independent relations that connect the moment of inertia, the spin-induced quadrupole moment, and the tidal deformability of neutron stars. In this paper, we study the I-Love-Q relations for superfluid neutron stars for a general relativistic two-fluid model: one fluid being the neutron superfluid and the other a conglomerate of all charged components. We study to what extent the two-fluid dynamics might affect the robustness of the I-Love-Q relations by using a simple two-component polytropic model and a relativistic mean field model with entrainment for the equation-of-state. Our results depend crucially on the spin ratio Ωn/Ωp between the angular velocities of the neutron superfluid and the normal component. We find that the I-Love-Q relations can still be satisfied to high accuracy for superfluid neutron stars as long as the two fluids are nearly co-rotating Ωn/Ωp≈1. However, the deviations from the I-Love-Q relations increase as the spin ratio deviates from unity. In particular, the deviation of the Q-Love relation can be as large as O(10%) if Ωn/Ωp differ from unity by a few tens of percent. As Ωn/Ωp≈1 is expected for realistic neutron stars, our results suggest that the two-fluid dynamics should not affect the accuracy of any gravitational waveform models for neutron star binaries that employ the relation to connect the spin-induced quadrupole moment and the tidal deformability.


1990 ◽  
Vol 05 (14) ◽  
pp. 1071-1080 ◽  
Author(s):  
S. W. HUANG ◽  
M. Z. FU ◽  
S. S. WU ◽  
S. D. YANG

The equation of state of the asymmetric nuclear matter is calculated with the Gogny D1 effective density-dependent nucleon-nucleon interaction and the Coulomb interaction in the framework of the finite-temperature HF method with the rearrangement term. The dependence of the thermodynamical properties such as the critical temperature of the liquid-gas phase transition, the chemical potential, the compression modulus and the entropy on the Coulomb interaction in nuclear matter is treated by using a shielded two-body Coulomb potential and this method has been found to be a reasonable and effective approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


Sign in / Sign up

Export Citation Format

Share Document