scholarly journals Use of Spectroscopy and Computer Simulation to the Study of Surfaces Modified by Ionic Implantation

2021 ◽  
Vol 66 (6) ◽  
pp. 511
Author(s):  
D.Yu. Nikolaieva ◽  
V.V. Honcharov ◽  
D.Yu. Ivashin ◽  
V.O. Zazhigalov

Using X-ray Photoelectron Spectroscopy (XPS) and energy dispersion spectrometry, the phase and elemental compositions of the nanoscale surface layer of implants are studied. The method of determination of the optimal mode of nanoscale modification of the surfaces of metals and alloys by means of the ionic implantation is presented. The problem of processing the curved surfaces with mathematical calculations and a computer simulation is solved. The proposed technique is tested on synthesized implants. The sample hardness was taken as a criterion.

2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Camilo Fuentes Serrano ◽  
Juan Reinaldo Estevez Alvares ◽  
Alfredo Montero Alvarez ◽  
Ivan Pupo Gonzales ◽  
Zahily Herrero Fernandez ◽  
...  

A method for determination of Cr, Fe, Co, Ni, Cu, Zn, Hg and Pb in waters by Energy Dispersive X Ray Fluorescence (EDXRF) was implemented, using a radioisotopic source of 238Pu. For previous concentration was employed a procedure including a coprecipitation step with ammonium pyrrolidinedithiocarbamate (APDC) as quelant agent, the separation of the phases by filtration, the measurement of filter by EDXRF and quantification by a thin layer absolute method. Sensitivity curves for K and L lines were obtained respectively. The sensitivity for most elements was greater by an order of magnitude in the case of measurement with a source of 238Pu instead of 109Cd, which means a considerable decrease in measurement times. The influence of the concentration in the precipitation efficiency was evaluated for each element. In all cases the recoveries are close to 100%, for this reason it can be affirmed that the method of determination of the studied elements is quantitative. Metrological parameters of the method such as trueness, precision, detection limit and uncertainty were calculated. A procedure to calculate the uncertainty of the method was elaborated; the most significant source of uncertainty for the thin layer EDXRF method is associated with the determination of instrumental sensitivities. The error associated with the determination, expressed as expanded uncertainty (in %), varied from 15.4% for low element concentrations (2.5-5 μg/L) to 5.4% for the higher concentration range (20-25 μg/L).


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1969
Author(s):  
Riccardo Scarfiello ◽  
Elisabetta Mazzotta ◽  
Davide Altamura ◽  
Concetta Nobile ◽  
Rosanna Mastria ◽  
...  

The surface and structural characterization techniques of three atom-thick bi-dimensional 2D-WS2 colloidal nanocrystals cross the limit of bulk investigation, offering the possibility of simultaneous phase identification, structural-to-morphological evaluation, and surface chemical description. In the present study, we report a rational understanding based on X-ray photoelectron spectroscopy (XPS) and structural inspection of two kinds of dimensionally controllable 2D-WS2 colloidal nanoflakes (NFLs) generated with a surfactant assisted non-hydrolytic route. The qualitative and quantitative determination of 1T’ and 2H phases based on W 4f XPS signal components, together with the presence of two kinds of sulfur ions, S22− and S2−, based on S 2p signal and related to the formation of WS2 and WOxSy in a mixed oxygen-sulfur environment, are carefully reported and discussed for both nanocrystals breeds. The XPS results are used as an input for detailed X-ray Diffraction (XRD) analysis allowing for a clear discrimination of NFLs crystal habit, and an estimation of the exact number of atomic monolayers composing the 2D-WS2 nanocrystalline samples.


2021 ◽  
Vol 17 ◽  
Author(s):  
Ke Huan ◽  
Li Tang ◽  
Dongmei Deng ◽  
Huan Wang ◽  
Xiaojing Si ◽  
...  

Background: Hydrogen peroxide (H2O2) is a common reagent in the production and living, but excessive H2O2 may enhance the danger to the human body. Consequently, it is very important to develop economical, fast and accurate techniques for detecting H2O2. Methods: A simple two-step electrodeposition process was applied to synthesize Pd-Cu/Cu2O nanocomposite for non-enzymatic H2O2 sensor. Cu/Cu2O nanomaterial was firstly electrodeposited on FTO by potential oscillation technique, and then Pd nanoparticles were electrodeposited on Cu/Cu2O nanomaterial by cyclic voltammetry. The chemical structure, component, and morphology of the synthesized Pd-Cu/Cu2O nanocomposite were characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The electrochemical properties of Pd-Cu/Cu2O nanocomposite were studied by cyclic voltammetry and amperometry. Results: Under optimal conditions, the as-fabricated sensor displayed a broad linear range (5-4000 µM) and low detection limit (1.8 µM) for the determination of H2O2. The proposed sensor showed good selectivity and reproducibility. Meanwhile, the proposed sensor has been successfully applied to detect H2O2 in milk. Conclusion: The Pd-Cu/Cu2O/FTO biosensor exhibits excellent electrochemical activity for H2O2 reduction, which has great potential application in the field of food safety.


2020 ◽  
Author(s):  
Zheng Chen ◽  
Aleksander Jaworski ◽  
Jianhong Chen ◽  
Tetyana Budnyak ◽  
Ireneusz Szewczyk ◽  
...  

Metal-free nitrogen-doped carbon is considered as a green functional material, but the structural determination of the atomic positions of nitrogen remains challenging. We recently demonstrated that directly-excited solid state <sup>15</sup>N NMR (ssNMR) spectroscopy is a powerful tool for the determination of such positions in an N-doped carbon at natural <sup>15</sup>N isotope abundance. Here we present a green chemistry approach to the synthesis of N-doped carbon using cellulose as precursor, and a study of the catalytic properties and atomic structures of the related catalyst. The N-doped carbon (NH<sub>3</sub>) was obtained by oxidation of cellulose with HNO<sub>3</sub> followed by ammonolysis at 800°C. It had a N content of 6.5 wt.% and a surface area of 557 m<sup>2 </sup>g<sup>–1</sup>, and <sup>15</sup>N ssNMR spectroscopy provided evidence for graphitic nitrogen besides of regular pyrrolic and pyridinic nitrogen. This structure determination enabled probing the role of graphitic nitrogen for electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitrite reduction reaction. The N-doped carbon catalyst (NH<sub>3</sub>) had higher electrocatalytic activities in OER and HER under alkaline conditions and a higher activity for nitrite reduction, as compared with a catalyst prepared by carbonization of the HNO<sub>3</sub>-treated cellulose in N<sub>2</sub>. The electrocatalytic selectivity for nitrite reduction of the N-doped carbon catalyst (NH<sub>3</sub>) was directly related to the graphitic nitrogen functions. Complementary structural analysis by means of <sup>13</sup>C and <sup>1</sup>H ssNMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature N<sub>2 </sub>adsorption were preformed and provided support to the findings. The results show that directly-excited <sup>15</sup>N ssNMR at natural <sup>15</sup>N abundance is generally capable to provide information on N-doped carbon materials, and it is expected that the approach can be applied to a wide range of solids with an intermediate amount of N atoms.


Clay Minerals ◽  
1982 ◽  
Vol 17 (4) ◽  
pp. 477-481 ◽  
Author(s):  
S. Evans ◽  
E. Raftery

It is usually assumed that the oxidation state of the small proportion of Mn sometimes present in micas is +2, although there is evidence from electronic spectroscopy (Burns, 1970) for at least the occasional occurrence of Mn(III) in manganophyllite. We describe here X-ray photoelectron spectroscopic (XPS) measurements on the Mn in a Norwegian lepidolite which was the subject of a concurrent structural study by X-ray photoelectron diffraction (Evans & Raftery, 1982). To establish the Mn oxidation state we have compared the Mn2p core-electron binding energies (BE), the Mn2P3/2-O ls BE differences, and the Mn2p XPS peak profiles from the four common oxides of manganese (MnO, Mn3O4, Mn2O3 and MnO2) with those from the lepidolite. A re-examination of these oxides was undertaken because the agreement between reports in the literature was unsatisfactory, and uncertainty existed concerning the integrity of some of the surfaces previously examined.


2015 ◽  
Vol 7 (3) ◽  
pp. 1720-1725 ◽  
Author(s):  
Marco D. Torelli ◽  
Rebecca A. Putans ◽  
Yizheng Tan ◽  
Samuel E. Lohse ◽  
Catherine J. Murphy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document