Severe Protein S Deficiency in a Newborn

PEDIATRICS ◽  
1992 ◽  
Vol 89 (4) ◽  
pp. 674-676
Author(s):  
CHARLES H. PEGELOW ◽  
MARUIES LEDFORD ◽  
JONELL YOUNG ◽  
GASTON ZILLERUELO

Protein S is a vitamin K-dependent glycoprotein which acts as a cofactor for the anticoagulant activity of protein C.1,2 With production under autosomal control, heterozygotes produce half-normal levels and thrombotic disease may develop.3-6 Although thromboses occur primarily in adults, there are isolated reports of their occurrence in affected children.7-13 Severe protein C deficiency results in a syndrome in which affected children develop multiple thromboses in the newborn period.14 A recent report described a child with homozygous protein S deficiency who presented with neonatal purpura fulminans and other thromboses similar to those found in protein C deficiency.15,16 In this report, we

1987 ◽  
Author(s):  
A W Broekmans ◽  
F J M der Meer ◽  
K Briët

Hereditary antithrombin III deficiency,protein C deficiency, and protein S deficiency predispose to the occurrence of venous thrombotic disease at a relatively youngage and often without an apparent cause. These disorders inherit as an autosomal dominant trait. Heterozygotes are at risk fosuperficial thrombophlebitis, thrombosis atnearly every venous site, and pulmonary embolism. Homozygous protein C deficiency may present itself with a purpura fulminans syndrome shortly after birth.In the acute phase of venous thromboembolism heparin is effective for preventing extension of the thrombotic process, and pulmonary embolism. In patients with antithrombin III deficiency the concomittant useof antithrombin III concentrate is controversial, although some patients may requirehigher doses of heparin.Substitution therapy is only indicated in homozygous protein C deficient patientswith purpura fulminans. Fresh frozen plasma i.v. is the treatment of choice, in a dosage of 10 ml/kg once or twice daily. The current prothrombin complex concentrates may induce new skin lesions and disseminated intravascular coagulation. After the lesions have been healed(mostly in 4 to6 weeks)coumarin therapy may effectively prevent new episodes of purpura fulminans, provided the prothrombin time is kept within 2,5 - 4,0 INR. Heparin is ineffective for preventing purpura fulminans due to homozygous protein C deficiency.The thrombotic manifestations in heterozygotes are effectively prevented by coumarin therapy. This is supported by the observation that patients may remain free of thrombosis during long-term treatment and may have recurrences shortly after the withdrawal of the coumarin drug. The therapeutic range for the prothrombin time should be within 2,0 - 4,0 INR, target value 3,0 INR. In the initial phase of oral anticoagulant therapy protein C deficient patients are prone to the development of coumarin induced hemorrhagic skin (tissue) necrosis.In the patients studied in Leiden, it occurred in about 3% of the treated patients. Heparin appears to be ineffective for the prevention of coumarin-induced skin necrosis; high loading doses of coumarin should be avoided and the prothrombin timeshouldbe checked dialy during the initial phase of oral anticoagulant treatment. Tissue necrosis may contribute to bleeding complications after fibrinolytic therapy, ashas been observed in two protein C deficient patients.In clinical situations with an increased risk for thrombosis such as surgery and pregnancy, heparin (in-low-doses) alone orin combination with coumarins have been used succesfully for the prevention of thrombosis. The need for antithrombin III concentrates in patients with hereditary antithrombin III deficiency in such situations is not substantiated.Although anabolic steroids are capable to increase the plasma concentrations of antithrombin III and of protein C in the respective deficiency states, its efficacy in preventing thrombotic episodes remains to be established.An optimal strategy for preventing thrombosis in congenital thrombotic syndromes is to identify still asymptomatic patients. In case of antithrombin III, protein C, and protein S deficiency this search is feasible. During risk situations for thrombosis patients are to be protected against the development of thrombosis.In Leiden pregnant women with one of the deficiencies are treated from the 14th week of pregnancy, initially with a shortacting coumarin drug, after the 34th week withheparin s.c. b.i.d. at therapeutic dosages,and after delivery coumarin therapy is reTnstituted during 6 weeks. The use of oralcontraceptives should be avoided, unlesspatients are under coumarin treatment. As long as deficient patients remain asymptomatic no antithrombotic treatment is indicated. After the first documented thromboticincident patients are treated indefinitelywith oral anticoagulants.


1988 ◽  
Vol 59 (01) ◽  
pp. 018-022 ◽  
Author(s):  
C L Gladson ◽  
I Scharrer ◽  
V Hach ◽  
K H Beck ◽  
J H Griffin

SummaryThe frequency of heterozygous protein C and protein S deficiency, detected by measuring total plasma antigen, in a group (n = 141) of young unrelated patients (<45 years old) with venous thrombotic disease was studied and compared to that of antithrombin III, fibrinogen, and plasminogen deficiencies. Among 91 patients not receiving oral anticoagulants, six had low protein S antigen levels and one had a low protein C antigen level. Among 50 patients receiving oral anticoagulant therapy, abnormally low ratios of protein S or C to other vitamin K-dependent factors were presented by one patient for protein S and five for protein C. Thus, heterozygous Type I protein S deficiency appeared in seven of 141 patients (5%) and heterozygous Type I protein C deficiency in six of 141 patients (4%). Eleven of thirteen deficient patients had recurrent venous thrombosis. In this group of 141 patients, 1% had an identifiable fibrinogen abnormality, 2% a plasminogen abnormality, and 3% an antithrombin III deficiency. Thus, among the known plasma protein deficiencies associated with venous thrombosis, protein S and protein C. deficiencies (9%) emerge as the leading identifiable associated abnormalities.


1989 ◽  
Vol 61 (01) ◽  
pp. 144-147 ◽  
Author(s):  
A Girolami ◽  
P Simioni ◽  
A R Lazzaro ◽  
I Cordiano

SummaryDeficiency of protein S has been associated with an increased risk of thrombotic disease as already shown for protein C deficiency. Deficiencies of any of these two proteins predispose to venous thrombosis but have been only rarely associated with arterial thrombosis.In this study we describe a case of severe cerebral arterial thrombosis in a 44-year old woman with protein S deficiency. The defect was characterized by moderately reduced levels of total and markedly reduced levels of free protein S. C4b-bp level was normal. Protein C, AT III and routine coagulation tests were within the normal limits.In her family two other members showed the same defect. All the affected members had venous thrombotic manifestations, two of them at a relatively young age. No other risk factors for thrombotic episodes were present in the family members. The patient reported was treated with ASA and dipyridamole and so far there were no relapses.


Author(s):  
J Malm ◽  
M Laurell ◽  
I M Nilsson ◽  
B Dahlbäck

Consecutive patients with a history of thrombo-embolic disease (n = 241, 109 males, 132 females, mean age 46 y), referred to the Coagulation Laboratory during an 18 month period, were analysed for defects in their coagulation and fibrinolytic systems. The diagnosis of thrombosis had been verified with phlebography and that of pulmonary embolus with scintigraphy or angiography. Retinal venous thrombosis was found in 15 of the patients. In 15 cases the thrombotic episodes occurred postoperatively, in 15 during pregnancy, in 12 during the postpartum period and in 20 during use of oral contraceptives. In the remaining cases no clinical riskfactors were identified.The concentration of protein C zymogen was measured with an immunoradiometric assay. Functional protein C was determined with a clotting inhibition assay. Protein C deficiency was found in 8 cases. Two of these had a functional protein C deficiency with normal zymogen levels. The concentration of total, as well as free (not in complex with C4b-binding protein), protein S was determined with a radioimmunoassay. Two cases of protein S deficiency were detected. Three patients with antithrombin III deficiency and two with plasminogen deficiency were found.The fibrinolytic activity after venous occlusion was analysed in 216 patients. Decreased levels were found in 32 %. The concentration of tissue plasminogen activator inhibitor (PAI) was measured in 110 patients and found to be increased in 65 % of the cases. In 99 patients both the fibrinolytic activity and the PAI concentration were measured. A combination of decreased fibrinolytic activity and increased levels of PAI was found in 44 cases. The concentration of tissue plasminogen activator antigen was decreased in 22 % of 105 cases analysed.Thus, in this material of patients with thrombo-embolic disease, abnormalities were found in 47 %. Defects in the fibrinolytic system were the most common findings. Protein C or protein S deficiency was diagnosed in less than 5 % of the cases.


2009 ◽  
Vol 62 (1-2) ◽  
pp. 53-62 ◽  
Author(s):  
Gorana Mitic ◽  
Ljubica Povazan ◽  
Radmila Lazic ◽  
Dragan Spasic ◽  
Milana Maticki-Sekulic

Inherited thrombophilia can be defined as a predisposition to thrombosis caused by heritable defects, such as mutations in genes encoding the natural anticoagulants or clotting factors. Pregnancy related risk of VTE is sixfold increased comparing to non pregnant age matched women. Pregnancy is an independent risk factor for the development of venous thromboembolism and this risk is further increased by the presence of thrombophilia. Aim of the study: The aim of the study was to evaluate the association between deficiency of natural anticoagulants: antithrombin, protein C and protein S and pregnancy related thromboembolism. We have determined the activities of antithrombin, proten C and protein S in 74 women with pregnancy related thrombosis and in 45 healthy women who had at least two uncomplicated pregnancies. Among the women with the history of venous thromboembolism antithrombin deficiency was found in 4 (5.4%), protein C deficiency in 2 (2.7%) and protein S deficiency in 5 (6.76%). The total of 11 (14.6%) women was found to be deficient. Not a single woman in the control group was found to be deficient in natural anticoagulants. Deficiencies of coagulation inhibitors are associated with an increased risk of venous thrombosis during pregnancy and puerperium (p= 0.006). Antithrombin, protein C and protein S deficient women are at higher risk of developing venous thromboembolism during antepartal period (p= 0.0097). Prophylactic treatment with heparin should be recommended from the very beginning of the following pregnancy in women with antithrombin, protein C or protein S deficiency.


2014 ◽  
Vol 52 (193) ◽  
pp. 729-731
Author(s):  
Arun Kannan ◽  
Jose Lizcano ◽  
Sweta Chandra ◽  
Christie Murphy

Warfarin Induced Skin Necrosis is a well-known complication in patients being started on warfarin without adequate bridging . The mechanism is thought to be due to protein C deficiency . We present a rather unusual cause of protein C deficiency due to sepsis resulting in warfarin induced skin necrosis. 43 year old lady who has been on chronic warfarin therapy secondary to anti phospholipid syndrome was admitted to the hospital for acute ischemic cerebellar stroke. Warfarin was held due to acute thrombocytopenia. She was discharged after restarting the warfarin. She presented back with septic shock due to pneumonia. She was found to have multiple necrotic areas consistent with skin necrosis. Unfortunately, patient died due to multi organ failure despite goal directed therapy. This case demonstrates the importance of recognizing the sepsis as an acquired cause of protein C deficiency.


Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1297-1300 ◽  
Author(s):  
HP Schwarz ◽  
M Fischer ◽  
P Hopmeier ◽  
MA Batard ◽  
JH Griffin

Abstract A family with a history of severe recurrent venous thromboembolic disease was studied to determine if a plasma protein deficiency could account for observed disease. Protein S levels in plasma were determined immunologically using the Laurell rocket technique. The propositus, his mother, his aunt, and his cousin who were clinically affected had 17% to 65% of the control levels of protein S antigen (normal range, 71% to 147%). Since three of these patients were receiving oral anticoagulant therapy, the ratios of protein S to prothrombin, factor X, and protein C in these patients were compared with values for a group of orally anticoagulated controls. These results suggested that protein S is half-normal in all family members with thrombotic disease. Other proteins known to be associated with familial thrombotic disease, including antithrombin III, plasminogen, fibrinogen, and protein C, were normal. Because plasma protein S serves as a cofactor for the anticoagulant activity of activated protein C and because protein C deficiency is associated with recurrent thrombotic disease, it is suggested that recurrent thrombotic disease in this family is the result of an inherited deficiency of protein S.


2019 ◽  
Vol 17 (4) ◽  
pp. 117-122
Author(s):  
Muhammad Hanif Mengal ◽  
Hina Abbas ◽  
Kiran Aamir ◽  
Aamir Ramzan

Background: Thrombophilia is a common risk factor for venous thromboembolism. The objective of this study was to determine prevalence of inherited protein C and protein S deficiency in renal transplant candidates of Sindh Province, Pakistan. Material & Methods: This cross-sectional study was conducted in Department of Pathology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan from 16-10-2010 to 15-4-2011. 300 renal transplant candidates were selected. Candidates with acquired thrombotic disorders, women taking oral contraceptives and patients taking anti-coagulants during previous one week were excluded. Venous blood samples were collected before starting dialysis procedure or at least two days after last dialysis session. Platelet-poor plasma (PPP) was parted using plastic pipettes and protein C and protein S were processed on coagulation analyzer. Sex, age groups (<40 and ≥ 40years), presence of protein C deficiency and presence of protein S deficiency were nominal variables and analyzed by count and percentage along with population parameters. Results: 300 renal transplant candidates included 199 (66.33%) men and 101 (33.67%) women and 238 (79.33%) in age group <40 years and 62 (20.67%) cases in age group ≥40 years. Prevalence of protein C deficiency was 6.66% (20/300) and of protein S deficiency was 4% (12/300). Prevalence of PC deficiency was higher in men 5.33% than women 1.33%. Also prevalence of PS deficiency was higher in men 3.0% than women 1.0%. Prevalence of PC deficiency was higher in age group <40 years 5.67% than ≥40 years 1.0%. Also prevalence of PS deficiency was higher in age group <40 years 3.33% than ≥40 years 0.66%. Conclusion: More prolonged and follow-up studies are needed to define the true significance of deficiency of protein C and S (coagulation inhibitors) in post-transplant settings.


Sign in / Sign up

Export Citation Format

Share Document