scholarly journals Corrigendum to ``Descriptive Measures of Poisson-Lomax Distribution''

2020 ◽  
Vol 43 (2) ◽  
pp. 345-353
Author(s):  
Khushnoor Khan

This corrigendum focuses on the correction of numerical results derived from Poisson-Lomax Distribution (PLD) originally proposed by Al-Zahrani & Sagor (2014). Though the mathematical properties and derivations by Al-Zahrani & Sagor (2014) were immaculate but during the execution ofthe R codes using Monte Carlo simulation some anomalies occurred in the calculation of the mean values. The same  anomalies are addressed in thepresent corrigendum. The outcome of the corrigendum will provide basic guidelines for the academia and reviewers of various journals to match thenumerical results with the shape of the probability distribution under study. The results will also emphasize the fact that code writing is a cumbersome process and due diligence be exercised in executing the codes using any programming language. Relevant R codes are appended in Appendix 'A'.

2007 ◽  
Vol 40 (5) ◽  
pp. 964-965
Author(s):  
T. Ida

The statistical properties of intensities affected by counting loss based on conventional non-extended and extended dead-time models are examined by a Monte Carlo method. It has been confirmed that the variance of the counted pulses for the non-extended dead-time model with the rate of generated pulsesr and the dead-time τ is given by \sigma_{\rm non}^2 = \mu_{\rm non}/(1+r \tau)^2, while that for the extended dead-time model is given by \sigma_{\rm ext}^2 = \mu_{\rm ext} [1 - 2r\tau \exp(-r \tau)], as proposed by Laundy & Collins [(2003).J. Synchrotron Rad.10, 214–218], for the mean values of counted pulses μnonand μext, respectively. Practical formulae to estimate the statistical errors of the corrected intensities are also presented.


2011 ◽  
Vol 18 (1-2) ◽  
pp. 387-396
Author(s):  
Yimin Zhang

On the basis of the Bouc-Wen hysteretic model, the effective numerical method for the response of nonlinear multi-degree-of-freedom (MDOF) stochastic hysteretic systems is presented using second moment method. Using this method, the mean values, variances and covariances are computed. The Monte Carlo simulation is applied to validate the method. The results obtained by the two methods are contrasted, and the solutions of the method in this paper agreed very well with the Monte Carlo simulation. It has solved the random response of nonlinear stochastic vibration systems which is caused by the stochastic hysteretic loop itself.


2013 ◽  
Vol 740-742 ◽  
pp. 393-396
Author(s):  
Maxim N. Lubov ◽  
Jörg Pezoldt ◽  
Yuri V. Trushin

The influence of attractive and repulsive impurities on the nucleation process of the SiC clusters on Si(100) surface was investigated. Kinetic Monte Carlo simulations of the SiC clusters growth show that that increase of the impurity concentration (both attractive and repulsive) leads to decrease of the mean cluster size and rise of the nucleation density of the clusters.


2020 ◽  
Vol 3 (3) ◽  
pp. 533
Author(s):  
Josua Guntur Putra ◽  
Jane Sekarsari

One of the keys to success in construction execution is timeliness. In fact, construction is often late than originally planned. It’s caused by project scheduling uncertainty. Deterministic scheduling methods use data from previous projects to determine work duration. However, not every project has same work duration. The PERT method provides a probabilistic approach that can overcome these uncertainties, but it doesn’t account for the increase in duration due to parallel activities. In 2017, the PERT method was developed into the M-PERT method. The purpose of this study is to compare the mean duration and standard deviation of the overall project between PERT and M-PERT methods and compare them in Monte Carlo simulation. The research method used is to calculate the mean duration of the project with the PERT, M-PERT, and Monte Carlo simulation. The study was applied to a three-story building project. From the results of the study, the standard deviation obtained was 5.079 for the M-PERT method, 8.915 for the PERT method, and 5.25 for the Monte Carlo simulation. These results show the M-PERT method can provide closer results to computer simulation result than the PERT method. Small standard deviation value indicates the M-PERT method gives more accurate results.ABSTRAKSalah satu kunci keberhasilan dalam suatu pelaksanaan konstruksi adalah ketepatan waktu. Kenyataannya, pelaksanaan konstruksi sering mengalami keterlambatan waktu dari yang direncanakan. Hal ini disebabkan oleh ketidakpastian dalam merencanakan penjadwalan proyek. Metode penjadwalan yang bersifat deterministik menggunakan data dari proyek sebelumnya untuk menentukan durasi pekerjaan. Akan tetapi, tidak setiap proyek memiliki durasi pekerjaan yang sama. Metode PERT memberikan pendekatan probabilistik yang dapat mengatasi ketidakpastian tersebut, tetapi metode ini tidak memperhitungkan pertambahan durasi akibat adanya kegiatan yang berbentuk paralel. Pada tahun 2017, metode PERT dikembangkan menjadi metode M-PERT. Tujuan dari penelitian ini adalah membandingkan mean durasi dan standar deviasi proyek secara keseluruhan antara metode PERT dan M-PERT dan membandingkan kedua metode tersebut dalam simulasi Monte Carlo. Metode penelitian yang dilakukan adalah menghitung mean durasi proyek dengan metode PERT, M-PERT, dan simulasi Monte Carlo. Penelitian diterapkan pada proyek gedung bertingkat tiga. Dari hasil penelitian, nilai standar deviasi diperoleh sebesar 5,079 untuk metode M-PERT, 8,915 untuk metode PERT, dan 5,25 untuk simulasi Monte Carlo. Hasil ini menunjukan metode M-PERT dapat memberikan hasil yang lebih mendekati hasil simulasi komputer daripada metode PERT. Nilai standar deviasi yang kecil menunjukan metode M-PERT memberikan hasil yang lebih akurat.


2020 ◽  
Vol 5 (4) ◽  
pp. 64
Author(s):  
Themis Matsoukas

We formulate the statistics of the discrete multicomponent fragmentation event using a methodology borrowed from statistical mechanics. We generate the ensemble of all feasible distributions that can be formed when a single integer multicomponent mass is broken into fixed number of fragments and calculate the combinatorial multiplicity of all distributions in the set. We define random fragmentation by the condition that the probability of distribution be proportional to its multiplicity, and obtain the partition function and the mean distribution in closed form. We then introduce a functional that biases the probability of distribution to produce in a systematic manner fragment distributions that deviate to any arbitrary degree from the random case. We corroborate the results of the theory by Monte Carlo simulation, and demonstrate examples in which components in sieve cuts of the fragment distribution undergo preferential mixing or segregation relative to the parent particle.


2013 ◽  
Vol 869-870 ◽  
pp. 581-592
Author(s):  
Mauro Arnesano ◽  
Antonio Paolo Carlucci ◽  
Giovanni D'Oria ◽  
Alessio Guadalupi ◽  
Domenico Laforgia

The energy planning based on Mean - Variance theory, guides the investors in investment decisions, trying to maximize the return and minimize the risk of investment. However, this theory is based on strong hypotheses and, in addition, input data are often affected by estimation errors. Moreover, this theory determines poor diversification increasing return and risk of the portfolio, and strong variability of the outputs when inputs are varied.In the first part of the paper, the Mean - Variance theory was applied to the energy generation in Italy; in particular, the analysis was on the actual energy mix, but also assuming the use of nuclear technology and taking into account verisimilar improvement, of technologies in the future.On the other hand, in the second part of the paper, a methodology has been applied in order to limit the problems of Mean-Variance theory applied to the energy mix settlement. In particular, the input variables have been calculated using Monte Carlo simulation, in order to reduce the estimation error, and the Resampled EfficiencyTMtechnique has been applied in order to calculate the resulting new “average” efficient frontier. This methodology has been applied either not limiting or limiting the minimum and maximum percentage for every energy generation technology, in order to simulate constraints due, for example, to the technological characteristics of the plant, the availability of the sources and eventually to norms, to the territorial characteristics and to the socio-political choices. The application of Mean - Variance theory allowed to obtain energy portfolio, alternative to the actual, characterized by higher values of expected returns an lower values of risk.It was also shown that the application of the Resampled EfficiencyTMtechnique with data originated with the Monte Carlo simulation effectively tackles the problems of Mean - Variance theory; in this way, the decision maker is helped in making decisions in the energy system policy and development.Thanks to this approach, applied in particular to the Italian energy contest, it was also possible to evaluate the effectiveness of the introduced modifications to the Italian actual energy mix to achieve the 2020 European Energy Directive targets in particular concerning the reduction of CO2levels.


1998 ◽  
Vol 14 (1) ◽  
pp. 165-188 ◽  
Author(s):  
Yutaka Nakamura ◽  
Tsuneyoshi Nakamura

A direct procedure is presented for generating a response spectrum for an arbitrary nonexceedance probability from a prescribed design mean response spectrum. An amplification factor is derived to estimate the maximum response values of an MDOF system for a nonexceedance probability from the mean maximum ones. An efficient stiffness design method for a shear building is developed with the use of its fundamental frequency and translational eigenvector as parameters for adjusting the nonexceedance probability of the seismic drifts to the specified value. The validity and accuracy of the proposed method are demonstrated by a Monte Carlo simulation together with time-history analyses.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Mariia Kozlova ◽  
Mikael Collan ◽  
Pasi Luukka

The paper compares numerically the results from two real option valuation methods, the Datar-Mathews method and the fuzzy pay-off method. Datar-Mathews method is based on using Monte Carlo simulation within a probabilistic valuation framework, while the fuzzy pay-off method relies on modeling the real option valuation by using fuzzy numbers in a possibilistic space. The results show that real option valuation results from the two methods seem to be consistent with each other. The fuzzy pay-off method is more robust and is also usable when not enough information is available for a construction of a simulation model.


Sign in / Sign up

Export Citation Format

Share Document